

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

JOINT STRIKE FIGHTER

AIR VEHICLE

C++ CODING STANDARDS

FOR THE SYSTEM DEVELOPMENT AND DEMONSTRATION PROGRAM

Document Number 2RDU00001 Rev C

December 2005

 Copyright 2005 by Lockheed Martin Corporation.

 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

3

This page intentionally left blank

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

4

TABLE OF CONTENTS

1 Introduction... 7
2 Referenced Documents ... 8
3 General Design.. 10

3.1 Coupling & Cohesion ... 11
3.2 Code Size and Complexity.. 12

4 C++ Coding Standards.. 13
4.1 Introduction... 13
4.2 Rules ... 13

4.2.1 Should, Will, and Shall Rules ... 13
4.2.2 Breaking Rules.. 13
4.2.3 Exceptions to Rules... 14

4.3 Terminology.. 14
4.4 Environment.. 17

4.4.1 Language... 17
4.4.2 Character Sets ... 17
4.4.3 Run-Time Checks ... 18

4.5 Libraries .. 19
4.5.1 Standard Libraries... 19

4.6 Pre-Processing Directives ... 20
4.6.1 #ifndef and #endif Pre-Processing Directives.. 20
4.6.2 #define Pre-Processing Directive.. 21
4.6.3 #include Pre-Processing Directive.. 21

4.7 Header Files .. 22
4.8 Implementation Files .. 23
4.9 Style .. 23

4.9.1 Naming Identifiers .. 24
4.9.1.1 Naming Classes, Structures, Enumerated types and typedefs 25
4.9.1.2 Naming Functions, Variables and Parameters .. 26
4.9.1.3 Naming Constants and Enumerators... 26

4.9.2 Naming Files... 26
4.9.3 Classes... 27
4.9.4 Functions... 27
4.9.5 Blocks ... 28
4.9.6 Pointers and References.. 28
4.9.7 Miscellaneous ... 28

4.10 Classes... 29
4.10.1 Class Interfaces ... 29
4.10.2 Considerations Regarding Access Rights ... 29
4.10.3 Member Functions .. 29
4.10.4 const Member Functions... 30
4.10.5 Friends... 30
4.10.6 Object Lifetime, Constructors, and Destructors ... 30

4.10.6.1 Object Lifetime ... 30
4.10.6.2 Constructors .. 31
4.10.6.3 Destructors .. 32

4.10.7 Assignment Operators... 33

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

5

4.10.8 Operator Overloading ... 33
4.10.9 Inheritance... 34
4.10.10 Virtual Member Functions.. 37

4.11 Namespaces... 38
4.12 Templates.. 39
4.13 Functions... 40

4.13.1 Function Declaration, Definition and Arguments... 40
4.13.2 Return Types and Values .. 41
4.13.3 Function Parameters (Value, Pointer or Reference) ... 42
4.13.4 Function Invocation .. 42
4.13.5 Function Overloading ... 43
4.13.6 Inline Functions .. 43
4.13.7 Temporary Objects.. 44

4.14 Comments ... 44
4.15 Declarations and Definitions... 46
4.16 Initialization .. 47
4.17 Types... 48
4.18 Constants... 48
4.19 Variables ... 49
4.20 Unions and Bit Fields.. 50
4.21 Operators... 51
4.22 Pointers & References... 52
4.23 Type Conversions ... 54
4.24 Flow Control Structures.. 56
4.25 Expressions ... 58
4.26 Memory Allocation... 59
4.27 Fault Handling .. 59
4.28 Portable Code.. 60

4.28.1 Data Abstraction ... 60
4.28.2 Data Representation .. 60
4.28.3 Underflow/Overflow... 61
4.28.4 Order of Execution.. 61
4.28.5 Pointer Arithmetic... 61

4.29 Efficiency Considerations... 62
4.30 Miscellaneous ... 62

5 Testing... 63
5.1.1 Subtypes.. 63
5.1.2 Structure.. 63

Appendix A... 66
Appendix B (Compliance) .. 142

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

6

Table 1. Change Log

Revision
ID

Document
Date

Change
Authority

Affected
Paragraphs

Comments

0001 Rev B Oct 2005 K. Carroll All Original
0001 Rev C Nov 2005 K. Carroll Change log - Added Add change log.
 Section 1, point 3

Rule 52
Rule 76
Rule 91
Rule 93
Rule 129
Rule 167
Rule 218
Appendix A, Rule 3
Table 2

Corrected spelling
errors.

 Rule 159 - clarify that
"unary &" is intended.

Both binary and unary
forms of "&" exist.
Clarification is added
to specify that the rule
is concerned with the
unary form.

 Rule 32 - clarification of
the scope of the rule. Also,
example added in appendix
for rule 32.

The rule does not
apply to a particular
partitioning of
template classes and
functions.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

7

1 INTRODUCTION
The intent of this document is to provide direction and guidance to C++ programmers that will
enable them to employ good programming style and proven programming practices leading to
safe, reliable, testable, and maintainable code. Consequently, the rules contained in this
document are required for Air Vehicle C++ development1 and recommended for non-Air
Vehicle C++ development.

As indicated above, portions of Air Vehicle (AV) code will be developed in C++. C++ was
designed to support data abstraction, object-oriented programming, and generic programming
while retaining compatibility with traditional C programming techniques. For this reason, the
AV Coding Standards will focus on the following:

1. Motor Industry Software Reliability Association (MISRA) Guidelines For The Use Of

The C Language In Vehicle Based Software,

2. Vehicle Systems Safety Critical Coding Standards for C, and

3. C++ language-specific guidelines and standards.

The MISRA Guidelines were written specifically for use in systems that contain a safety aspect
to them. The guidelines address potentially unsafe C language features, and provide
programming rules to avoid those pitfalls. The Vehicle Systems Safety Critical Coding Standards
for C, which are based on the MISRA C subset, provide a more comprehensive set of language
restrictions that are applied uniformly across Vehicle Systems safety critical applications. The
AV Coding Standards build on the relevant portions of the previous two documents with an
additional set of rules specific to the appropriate use C++ language features (e.g. inheritance,
templates, namespaces, etc.) in safety-critical environments.

Overall, the philosophy embodied by the rule set is essentially an extension of C++’s philosophy
with respect to C. That is, by providing “safer” alternatives to “unsafe” facilities, known
problems with low-level features are avoided. In essence, programs are written in a “safer”
subset of a superset.

1 TBD: Required for Air Vehicle non-prime teams?

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

8

2 REFERENCED DOCUMENTS

1. ANSI/IEEE Std 754, IEEE Standard for Binary Floating-Point Arithmetic, 1985.

2. Bjarne Stroustrup. The C++ Programming Language, 3rd Edition. Addison-Wesley,

2000.

3. Bjarne Stroustrup. Bjarne Stroustrup's C++ Glossary.

4. Bjarne Stroustrup. Bjarne Stroustrup's C++ Style and Technique FAQ.

5. Barbara Liskov. Data Abstraction and Hierarchy, SIGPLAN Notices, 23, 5 (May, 1988).

6. Scott Meyers. Effective C++: 50 Specific Ways to Improve Your Programs and Design,

2nd Edition. Addison-Wesley, 1998.

7. Scott Meyers. More Effective C++: 35 New Ways to Improve Your Programs and
Designs. Addison-Wesley, 1996.

8. Motor Industry Software Reliability Association. Guidelines for the Use of the C

Language in Vehicle Based Software, April 1998.

9. ISO/IEC 10646-1, Information technology - Universal Multiple-Octet Coded Character
Set (UCS) - Part 1: Architecture and Basic Multilingual Plane, 1993.

10. ISO/IEC 14882:2003(E), Programming Languages – C++. American National Standards

Institute, New York, New York 10036, 2003.

11. ISO/IEC 9899: 1990, Programming languages - C, ISO, 1990.

12. JSF Mission Systems Software Development Plan.

13. JSF System Safety Program Plan. DOC. No. 2YZA00045-0002.

14. Programming in C++ Rules and Recommendations.
Copyright © by Ellemtel Telecommunication Systems Laboratories
Box 1505, 125 25 Alvsjo, Sweden
Document: M 90 0118 Uen, Rev. C, 27 April 1992.

Used with permission supplied via the following statement:

Permission is granted to any individual or institution to use, copy, modify and distribute
this document, provided that this complete copyright and permission notice is maintained
intact in all copies.

http://www.research.att.com/%7Ebs/glossary.html
http://www.research.att.com/%7Ebs/homepage.html
https://aztecsc.jsfvpc.lmtas.com/jsf/livelink/SDP.doc?func=doc.Fetch&nodeId=15329656&docTitle=SDP.doc

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

9

15. RTCA/DO-178B, Software Considerations in Airborne Systems and Equipment
Certification, December 1992.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

10

3 GENERAL DESIGN
This coding standards document is intended to help programmers develop code that conforms to
safety-critical software principles, i.e., code that does not contain defects that could lead to
catastrophic failures resulting in significant harm to individuals and/or equipment. In general, the
code produced should exhibit the following important qualities:

Reliability: Executable code should consistently fulfill all requirements in a predictable manner.

Portability: Source code should be portable (i.e. not compiler or linker dependent).

Maintainability: Source code should be written in a manner that is consistent, readable, simple
in design, and easy to debug.

Testability: Source code should be written to facilitate testability. Minimizing the following
characteristics for each software module will facilitate a more testable and maintainable module:

1. code size
2. complexity
3. static path count (number of paths through a piece of code)

Reusability: The design of reusable components is encouraged. Component reuse can eliminate
redundant development and test activities (i.e. reduce costs).

Extensibility: Requirements are expected to evolve over the life of a product. Thus, a system
should be developed in an extensible manner (i.e. perturbations in requirements may be managed
through local extensions rather than wholesale modifications).

Readability: Source code should be written in a manner that is easy to read, understand and
comprehend.

Note that following the guidelines contained within this document will not guarantee the
production of an error-free, safe product. However, adherence to these guidelines, as well as the
processes defined in the Software Development Plan [12], will help programmers produce clean
designs that minimize common sources of mistakes and errors.

smr
Highlight

smr
Highlight

smr
Highlight

smr
Highlight

smr
Highlight

smr
Highlight

smr
Highlight

smr
Highlight

smr
Highlight

smr
Highlight

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

11

3.1 Coupling & Cohesion
Coupling and cohesion are properties of a system that has been decomposed into modules.
Cohesion is a measure of how well the parts in the same module fit together. Coupling is a
measure of the amount of interaction between the different modules in a system. Thus, cohesion
deals with the elements within a module (how well-suited elements are to be part of the same
module) while coupling deals with the relationships among modules (how tightly modules are
glued together).

Object-oriented design and implementation generally support desirable coupling and cohesion
characteristics. The design principles behind OO techniques lead to data cohesion within
modules. Clean interfaces between modules enable the modules to be loosely coupled.
Moreover, data encapsulation and data protection mechanisms provide a means to help enforce
the coupling and cohesion goals.

Source code should be developed as a set of modules as loosely coupled as is reasonably
feasible. Note that generic programming (which requires the use of templates) allows source
code to be written with loose coupling and without runtime overhead.

Examples of tightly coupled software would include the following:

• many functions tied closely to hardware or other external software sources, and
• many functions accessing global data.

There may be times where tightly coupled software is unavoidable, but its use should be both
minimized and localized as suggested by the following guidelines:

• limit hardware and external software interfaces to a small number of functions,
• minimize the use of global data, and
• minimize the exposure of implementation details.

smr
Highlight

smr
Highlight

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

12

3.2 Code Size and Complexity
AV Rule 1

Any one function (or method) will contain no more than 200 logical source lines of code (L-
SLOCs).

Rationale: Long functions tend to be complex and therefore difficult to comprehend and test.
Note: Section 4.2.1 defines should and shall rules as well the conditions under which

deviations from should or shall rules are allowed.

AV Rule 2
There shall not be any self-modifying code.

Rationale: Self-modifying code is error-prone as well as difficult to read, test, and maintain.

AV Rule 3
All functions shall have a cyclomatic complexity number of 20 or less.

Rationale: Limit function complexity. See AV Rule 3 in Appendix A for additional details.
Exception: A function containing a switch statement with many case labels may exceed this
limit.
Note: Section 4.2.1 defines should and shall rules as well the conditions under which

deviations from should or shall rules are allowed.

smr
Highlight

smr
Highlight

smr
Typewriter
For this unit and later, no routine is to be largerthan one screen.

smr
Highlight

smr
Highlight

smr
Highlight

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

13

4 C++ CODING STANDARDS
4.1 Introduction
The purpose of the following rules and recommendations is to define a C++ programming style
that will enable programmers to produce code that is more:

• correct,
• reliable, and
• maintainable.

In order to achieve these goals, programs should:
• have a consistent style,
• be portable to other architectures,
• be free of common types of errors, and
• be understandable, and hence maintainable, by different programmers.

4.2 Rules
4.2.1 Should, Will, and Shall Rules

There are three types of rules: should, will, and shall rules. Each rule contains either a
“should”, “will” or a “shall” in bold letters indicating its type.

• Should rules are advisory rules. They strongly suggest the recommended way of
doing things.

• Will rules are intended to be mandatory requirements. It is expected that they will be
followed, but they do not require verification. They are limited to non-safety-critical
requirements that cannot be easily verified (e.g., naming conventions).

• Shall rules are mandatory requirements. They must be followed and they require
verification (either automatic or manual).

4.2.2 Breaking Rules

AV Rule 4
To break a “should” rule, the following approval must be received by the developer:

• approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)

AV Rule 5
To break a “will” or a “shall” rule, the following approvals must be received by the
developer:

• approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)

• approval from the software product manager (obtained by the unit approval in the
developmental CM tool)

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

14

AV Rule 6
Each deviation from a “shall” rule shall be documented in the file that contains the
deviation). Deviations from this rule shall not be allowed, AV Rule 5 notwithstanding.

4.2.3 Exceptions to Rules
Some rules may contain exceptions. If a rule does contain an exception, then approval is not
required for a deviation allowed by that exception

AV Rule 7
Approval will not be required for a deviation from a “shall” or “will” rule that complies
with an exception specified by that rule.

4.3 Terminology
1. An abstract base class is a class from which no objects may be created; it is only used as

a base class for the derivation of other classes. A class is abstract if it includes at least one
member function that is declared as pure virtual.

2. An abstract data type is a type whose internal form is hidden behind a set of access

functions. Objects of the type are created and inspected only by calls to the access
functions. This allows the implementation of the type to be changed without requiring
any changes outside the module in which it is defined.

3. An accessor function is a function which returns the value of a data member.

4. A catch clause is code that is executed when an exception of a given type is raised. The

definition of an exception handler begins with the keyword catch.

5. A class is a user-defined data type which consists of data elements and functions which
operate on that data. In C++, this may be declared as a class; it may also be declared as a
struct or a union. Data defined in a class is called member data and functions defined in a
class are called member functions.

6. A class template defines a family of classes. A new class may be created from a class

template by providing values for a number of arguments. These values may be names of
types or constant expressions.

7. A compilation unit is the source code (after preprocessing) that is submitted to a

compiler for compilation (including syntax checking).

8. A concrete type is a type without virtual functions, so that objects of the type can be
allocated on the stack and manipulated directly (without a need to use pointers or
references to allow the possibility for derived classes). Often, small self-contained
classes. [3]

9. A constant member function is a function which may not modify data members.

10. A constructor is a function which initializes an object.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

15

11. A copy constructor is a constructor in which the first argument is a reference to an

object that has the same type as the object to be initialized.

12. Dead code is “executable object code (or data) which, as a result of a design error cannot
be executed (code) or used (data) in an operational configuration of the target computer
environment and is not traceable to a system or software requirement.” [9]

13. A declaration of a variable or function announces the properties of the variable or

function; it consists of a type name and then the variable or function name. For
functions, it tells the compiler the name, return type and parameters. For variables, it
tells the compiler the name and type.

int32 fahr;
int32 foo ();

14. A default constructor is a constructor which needs no arguments.

15. A definition of a function tells the compiler how the function works. It shows what

instructions are executed for the function.

int32 foo ()
{
 // Statements
}

16. An enumeration type is an explicitly declared set of symbolic integer constants. In C++

it is declared as an enum.

17. An exception is a run-time program anomaly that is detected in a function or member
function. Exception handling provides for the uniform management of exceptions.

18. A forwarding function is a function which does nothing more than call another function.

19. A function template defines a family of functions. A new function may be created from

a function template by providing values for a number of arguments. These values may be
names of types or constant expressions.

20. An identifier is a name which is used to refer to a variable, constant, function or type in

C++. When necessary, an identifier may have an internal structure which consists of a
prefix, a name, and a suffix (in that order).

21. An iterator is an object that con be used to traverse a data structure.

22. A macro is a name for a text string which is defined in a #define statement. When this

name appears in source code, the compiler replaces it with the defined text string.

23. Multiple inheritance is the derivation of a new class from more than one base class.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

16

24. A mutator function is a function which sets the value of a data member.

25. The one definition rule - there must be exactly one definition of each entity in a

program. If more than one definition appears, say because of replication through header
files, the meaning of all such duplicates must be identical. [3]

26. An overloaded function name is a name which is used for two or more functions or

member functions having different argument types.

27. An overridden member function is a member function in a base class which is re-
defined in a derived class.

28. A built-in data type is a type which is defined in the language itself, such as int.

29. Protected members of a class are member data and member functions which are

accessible by specifying the name within member functions of derived classes.

30. Public members of a class are member data and member functions which are accessible
everywhere by specifying an instance of the class and the name.

31. A pure virtual function is one with an initializer = 0 in its declaration. Making a virtual

function pure makes the class abstract. A pure virtual function must be overridden in at
least one derived class.

32. A reference is another name for a given variable. In C++, the ‘address of’ (&) operator is

used immediately after the data type to indicate that the declared variable, constant, or
function argument is a reference.

33. The scope of a name refers to the context in which it is visible. [Context, here, means the

functions or blocks in which a given variable name can be used.]

34. A side effect is the change of a variable as a by-product of an evaluation of an

expression.

35. A structure is a user-defined type for which all members are public by default.

36. A typedef is another name for a data type, specified in C++ using a typedef declaration.

37. Unqualified type is a type that does not have const or volatile as a qualifier.

38. A user-defined data type is a type which is defined by a programmer in a class, struct,

union, or enum definition or as an instantiation of a class template.

http://www.research.att.com/%7Ebs/glossary.html
http://www.research.att.com/%7Ebs/glossary.html
http://www.research.att.com/%7Ebs/glossary.html
http://www.research.att.com/%7Ebs/glossary.html

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

17

4.4 Environment
4.4.1 Language

AV Rule 8
All code shall conform to ISO/IEC 14882:2002(E) standard C++. [10]

Rationale: ISO/IEC 14882 is the international standard that defines the C++ programming
language. Thus all code shall be well-defined with respect to ISO/IEC 14882. Any language
extensions or variations from ISO/IEC 14882 shall not be allowed.

4.4.2 Character Sets
Note that the rules in this section may need to be modified if one or more foreign languages will
be used for input/output purposes (e.g. displaying information to pilots).

AV Rule 9 (MISRA Rule 5, Revised)
Only those characters specified in the C++ basic source character set will be used. This set
includes 96 characters: the space character, the control characters representing horizontal tab,
vertical tab, form feed, and newline, and the following 91 graphical characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9
_ { } [] # () < > % : ; . ? * + -
/ ^ & | ~ ! = , \ " ’

Rationale: Minimal required character set.

AV Rule 10 (MISRA Rule 6)
Values of character types will be restricted to a defined and documented subset of ISO
10646-1. [9]

Rationale: 10646-1 represents an international standard for character mapping. For the basic
source character set, the 10646-1 mapping corresponds to the ASCII mapping.

AV Rule 11 (MISRA Rule 7)
Trigraphs will not be used.
Trigraph sequences are three-character sequences that are replaced by a corresponding single
character, as follows:

Alternative Primary alternative primary alternative primary
??= # ??([??< {
??/ \ ??)] ??> }
??' ^ ??! | ??- ~

The trigraph sequences provide a way to specify characters that are missing on some
terminals, but that the C++ language uses.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

18

Rationale: Readability. See AV Rule 11 in Appendix A.
Note: trigraphs can often be disabled via compiler flags (e.g.–no_alternative_tokens for

the Green Hills C/C++ compiler suite)

AV Rule 12 (Extension of MISRA Rule 7)
The following digraphs will not be used:

Alternative Primary alternative Primary

<% { :>]
%> } %: #
<: [%:%: ##

The digraphs listed above provide a way to specify characters that are missing on some
terminals, but that the C++ language uses.

Rationale: Readability. See AV Rule 12 in Appendix A.
Note: Digraphs can often be disabled via compiler flags (e.g.–no_alternative_tokens for

the Green Hills C/C++ compiler suite)

AV Rule 13 (MISRA Rule 8)
Multi-byte characters and wide string literals will not be used.

Rationale: Both multi-byte and wide characters may be composed of more than one byte.
However, certain aspects of the behavior of multi-byte characters are implementation-
defined. [10]

AV Rule 14
Literal suffixes shall use uppercase rather than lowercase letters.

Rationale: Readability.
Example:

const int64 fs_frame_rate = 64l; // Wrong! Looks too much like 641
const int64 fs_frame_rate = 64L; // Okay

4.4.3 Run-Time Checks

AV Rule 15 (MISRA Rule 4, Revised)
Provision shall be made for run-time checking (defensive programming).

Rationale: For SEAL 1 or SEAL 2 software [13], provisions shall be made to ensure the
proper operation of software and system function. See AV Rule 15 in Appendix A for
additional details.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

19

4.5 Libraries
AV Rule 16

Only DO-178B level A [15] certifiable or SEAL 1 C/C++ libraries shall be used with safety-
critical (i.e. SEAL 1) code [13].

Rationale: Safety.
Note: All libraries used must be DO-178B level A certifiable or written in house and

developed using the same software development processes required for all other
safety-critical software. This includes both the run-time library functions as well as
the C/C++ standard library functions. [10,11] Note that we expect certifiable versions
of the C++ standard libraries to be available at some point in the future. These
certifiable libraries would be allowed under this rule.

4.5.1 Standard Libraries
AV Rule 17 through AV Rule 25 prohibit the use of a number of features whose behaviors are
local-specific, unspecified, undefined, implementation-defined, or otherwise poorly defined and
hence error prone.

AV Rule 17 (MISRA Rule 119)
The error indicator errno shall not be used.

Exception: If there is no other reasonable way to communicate an error condition to an
application, then errno may be used. For example, third party math libraries will often make
use of errno to inform an application of underflow/overflow or out-of-range/domain
conditions. Even in this case, errno should only be used if its design and implementation are
well-defined and documented.

AV Rule 18 (MISRA Rule 120)
The macro offsetof, in library <stddef.h>, shall not be used.

AV Rule 19 (MISRA Rule 121)
<locale.h> and the setlocale function shall not be used.

AV Rule 20 (MISRA Rule 122)
The setjmp macro and the longjmp function shall not be used.

AV Rule 21 (MISRA Rule 123)
The signal handling facilities of <signal.h> shall not be used.

AV Rule 22 (MISRA Rule 124, Revised)
The input/output library <stdio.h> shall not be used.

AV Rule 23 (MISRA Rule 125)
The library functions atof, atoi and atol from library <stdlib.h> shall not be used.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

20

Exception: If required, atof, atoi and atol may be used only after design and implementation
are well-defined and documented, especially in regards to precision and failures in string
conversion attempts.

AV Rule 24 (MISRA Rule 126)
The library functions abort, exit, getenv and system from library <stdlib.h> shall not be used.

AV Rule 25 (MISRA Rule 127)
The time handling functions of library <time.h> shall not be used.

4.6 Pre-Processing Directives
Since the pre-processor knows nothing about C++, it should not be used to do what can
otherwise be done in C++.

AV Rule 26
Only the following pre-processor directives shall be used:

1. #ifndef
2. #define
3. #endif
4. #include

Rationale: Limit the use of the pre-processor to those cases where it is necessary.
Note: Allowable uses of these directives are specified in the following rules.

4.6.1 #ifndef and #endif Pre-Processing Directives

AV Rule 27
#ifndef, #define and #endif will be used to prevent multiple inclusions of the same header
file. Other techniques to prevent the multiple inclusions of header files will not be used.

Rationale: Eliminate multiple inclusions of the same header file in a standard way.
Example: For SomeHeaderFileName.h

#ifndef Header_filename
#define Header_filename

 // Header declarations…

#endif

AV Rule 28
The #ifndef and #endif pre-processor directives will only be used as defined in AV Rule 27
to prevent multiple inclusions of the same header file.

Rationale: Conditional code compilation should be kept to a minimum as it can significantly
obscure testing and maintenance efforts.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

21

4.6.2 #define Pre-Processing Directive

AV Rule 29
The #define pre-processor directive shall not be used to create inline macros. Inline functions
shall be used instead.

Rationale: Inline functions do not require text substitutions and behave well when called
with arguments (e.g. type checking is performed). See AV Rule 29 in Appendix A for an
example.
See section 4.13.6 for rules pertaining to inline functions.

AV Rule 30
The #define pre-processor directive shall not be used to define constant values. Instead, the
const qualifier shall be applied to variable declarations to specify constant values.

Exception: The only exception to this rule is for constants that are commonly defined by
third-party modules. For example, #define is typically used to define NULL in standard
header files. Consequently, NULL may be treated as a macro for compatibility with third-
party tools.
Rationale: const variables follow scope rules, are subject to type checking and do not require
text substitutions (which can be confusing or misleading). See AV Rule 30 in Appendix A
for an example.

AV Rule 31
The #define pre-processor directive will only be used as part of the technique to prevent
multiple inclusions of the same header file.

Rationale: #define can be used to specify conditional compilation (AV Rule 27 and AV Rule
28), inline macros (AV Rule 29) and constants (AV Rule 30). This rule specifies that the only
allowable use of #define is to prevent multiple includes of the same header file (AV Rule 27).

4.6.3 #include Pre-Processing Directive

AV Rule 32
The #include pre-processor directive will only be used to include header (*.h) files.

Exception: In the case of template class or function definitions, the code may be partitioned
into separate header and implementation files. In this case, the implementation file may be
included as a part of the header file. The implementation file is logically a part of the header
and is not separately compilable. See AV Rule 32 in Appendix A.
Rationale: Clarity. The only files included in a .cpp file should be the relevant header (*.h)
files.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

22

4.7 Header Files
AV Rule 33

The #include directive shall use the <filename.h> notation to include header files.
Note that relative pathnames may also be used. See also AV Rule 53, AV Rule 53.1, and AV
Rule 55 for additional information regarding header file names.

Rationale: The include form “filename.h” is typically used to include local header files.
However, due to the unfortunate divergence in vendor implementations, only the
<filename.h> form will be used.

Examples:
#include <foo.h> // Good
#include <dir1/dir2/foo.h> // Good: relative path used
#include “foo.h” // Bad: “filename.h” form used

AV Rule 34
Header files should contain logically related declarations only.

Rationale: Minimize unnecessary dependencies.

AV Rule 35
A header file will contain a mechanism that prevents multiple inclusions of itself.

Rationale: Avoid accidental header file recursion. Note AV Rule 27 specifies the
mechanism by which multiple inclusions are to be eliminated whereas this rule (AV Rule 35)
specifies that each header file must use that mechanism.

AV Rule 36
Compilation dependencies should be minimized when possible. (Stroustrup [2], Meyers [6],
item 34)

Rationale: Minimize unnecessary recompilation of source files. See AV Rule 36 in
Appendix A for an example.
Note: AV Rule 37 and AV Rule 38 detail several mechanisms by which compilation

dependencies may be minimized.

AV Rule 37
Header (include) files should include only those header files that are required for them to
successfully compile. Files that are only used by the associated .cpp file should be placed in
the .cpp file—not the .h file.

Rationale: The #include statements in a header file define the dependencies of the file.
Fewer dependencies imply looser couplings and hence a smaller ripple-effect when the
header file is required to change.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

23

AV Rule 38
Declarations of classes that are only accessed via pointers (*) or references (&) should be
supplied by forward headers that contain only forward declarations.

Rationale: The header files of classes that are only referenced via pointers or references need
not be included. Doing so often increases the coupling between classes, leading to increased
compilation dependencies as well as greater maintenance efforts. Forward declarations of
the classes in question (supplied by forward headers) can be used to limit implementation
dependencies, maintenance efforts and compile times. See AV Rule 38 in Appendix A for an
example. Note that this technique is employed in the standard header <iosfwd> to declare
forward references to template classes used throughout <iostreams>.

AV Rule 39
Header files (*.h) will not contain non-const variable definitions or function definitions. (See
also AV Rule 139.)

Rationale: Header files should typically contain interface declarations—not implementation
details.
Exception: Inline functions and template definitions may be included in header files. See AV
Rule 39 in Appendix A for an example.

4.8 Implementation Files
AV Rule 40

Every implementation file shall include the header files that uniquely define the inline
functions, types, and templates used.

Rationale: Insures consistency checks. (See AV Rule 40 Appendix in A for additional
details)
Note that this rule implies that the definition of a particular inline function, type, or template
will never occur in multiple header files.

4.9 Style
Imposing constraints on the format of syntactic elements makes source code easier to read due to
consistency in form and appearance. Note that automatic code generators should be configured to
produce code that conforms to the style guidelines where possible. However, an exception is
made for code generators that cannot be reasonably configured to comply with should or will
style rules (safety-critical shall rules must still be followed).

AV Rule 41
Source lines will be kept to a length of 120 characters or less.

Rationale: Readability and style. Very long source lines can be difficult to read and
understand.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

24

AV Rule 42
Each expression-statement will be on a separate line.

Rationale: Simplicity, readability, and style. See AV Rule 42 in Appendix A for examples.

AV Rule 43
Tabs should be avoided.

Rationale: Tabs are interpreted differently across various editors and printers.
Note: many editors can be configured to map the ‘tab’ key to a specified number of spaces.

AV Rule 44
All indentations will be at least two spaces and be consistent within the same source file.

Rationale: Readability and style.

4.9.1 Naming Identifiers
The choice of identifier names should:

• Suggest the usage of the identifier.
• Consist of a descriptive name that is short yet meaningful.
• Be long enough to avoid name conflicts, but not excessive in length.
• Include abbreviations that are generally accepted.

Note: In general, the above guidelines should be followed. However, conventional usage of
simple identifiers (i, x, y, p, etc.) in small scopes can lead to cleaner code and will
therefore be permitted.

Additionally, the term ‘word’ in the following naming convention rules may be used to refer
to a word, an acronym, an abbreviation, or a number.

AV Rule 45
All words in an identifier will be separated by the ‘_’ character.

Rationale: Readability and Style.

AV Rule 46 (MISRA Rule 11, Revised)
User-specified identifiers (internal and external) will not rely on significance of more than 64
characters.
Note: The C++ standard suggests that a minimum of 1,024 characters will be significant.

[10]

AV Rule 47
Identifiers will not begin with the underscore character ‘_’.

Rationale: ‘_’ is often used as the first character in the name of library functions (e.g. _main,
exit, etc.) In order to avoid name collisions, identifiers should not begin with ‘’.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

25

AV Rule 48
Identifiers will not differ by:

• Only a mixture of case
• The presence/absence of the underscore character
• The interchange of the letter ‘O’, with the number ‘0’ or the letter ‘D’
• The interchange of the letter ‘I’, with the number ‘1’ or the letter ‘l’
• The interchange of the letter ‘S’ with the number ‘5’
• The interchange of the letter ‘Z’ with the number 2
• The interchange of the letter ‘n’ with the letter ‘h’.

Rationale: Readability.

AV Rule 49
All acronyms in an identifier will be composed of uppercase letters.
Note: An acronym will always be in upper case, even if the acronym is located in a portion

of an identifier that is specified to be lower case by other rules.

Rationale: Readability.

4.9.1.1 Naming Classes, Structures, Enumerated types and typedefs

AV Rule 50
The first word of the name of a class, structure, namespace, enumeration, or type created
with typedef will begin with an uppercase letter. All others letters will be lowercase.

Rationale: Style.
Example:

class Diagonal_matrix { … }; // Only first letter is capitalized;
enum RGB_colors {red, green, blue}; // RGB is an acronym so all letters are un upper case

Exception: The first letter of a typedef name may be in lowercase in order to conform to a
standard library interface or when used as a replacement for fundamental types (see AV Rule
209).

typename C::value_type s=0; // value_type of container C begins with a lower case
 //letter in conformance with standard library typedefs

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

26

4.9.1.2 Naming Functions, Variables and Parameters

AV Rule 51
All letters contained in function and variable names will be composed entirely of lowercase
letters.

Rationale: Style.
Example:

class Example_class_name
{

 public:
 uint16 example_function_name (void);

 private:
 uint16 example_variable_name;
 };

4.9.1.3 Naming Constants and Enumerators

AV Rule 52
Identifiers for constant and enumerator values shall be lowercase.
Example:

const uint16 max_pressure = 100;
enum Switch_position {up, down};

Rationale: Although it is an accepted convention to use uppercase letters for constants and
enumerators, it is possible for third party libraries to replace constant/enumerator names as
part of the macro substitution process (macros are also typically represented with uppercase
letters).

4.9.2 Naming Files
Naming files should follow the same guidelines as naming identifiers with a few additions.

AV Rule 53
Header files will always have a file name extension of ".h".

AV Rule 53.1
The following character sequences shall not appear in header file names: ‘, \, /*, //, or ".

Rationale: If any of the character sequences ‘, \, /*, //, or " appears in a header file name (i.e.
<h-char-sequence>), the resulting behavior is undefined. [10], 2.8(2) Note that relative
pathnames may be used. However, only “/” may be used to separate directory and file names.

Examples:
#include <foo /* comment */ .h> // Bad: “/*” prohibited
#include <foo’s .h> // Bad: “’” prohibited
#include <dir1\dir2\foo.h> // Bad: “\” prohibited
#include <dir1/dir2/foo.h> // Good: relative path used

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

27

AV Rule 54
Implementation files will always have a file name extension of ".cpp".

AV Rule 55
The name of a header file should reflect the logical entity for which it provides declarations.
Example:
For the Matrix entity, the header file would be named:

Matrix.h

AV Rule 56
The name of an implementation file should reflect the logical entity for which it provides
definitions and have a “.cpp” extension (this name will normally be identical to the header
file that provides the corresponding declarations.)

At times, more than one .cpp file for a given logical entity will be required. In these cases, a
suffix should be appended to reflect a logical differentiation.
Example 1: One .cpp file for the Matrix class:

Matrix.cpp
Example 2: Multiple files for a math library:

Math_sqrt.cpp
Math_sin.cpp
Math_cos.cpp

4.9.3 Classes

AV Rule 57
The public, protected, and private sections of a class will be declared in that order (the public
section is declared before the protected section which is declared before the private section).

Rationale: By placing the public section first, everything that is of interest to a user is
gathered in the beginning of the class definition. The protected section may be of interest to
designers when considering inheriting from the class. The private section contains details that
should be of the least general interest.

4.9.4 Functions

AV Rule 58
When declaring and defining functions with more than two parameters, the leading
parenthesis and the first argument will be written on the same line as the function name.
Each additional argument will be written on a separate line (with the closing parenthesis
directly after the last argument).
Rationale: Readability and style. See AV Rule 58 in Appendix A for examples.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

28

4.9.5 Blocks

AV Rule 59 (MISRA Rule 59, Revised)
The statements forming the body of an if, else if, else, while, do…while or for statement shall
always be enclosed in braces, even if the braces form an empty block.

Rationale: Readability. It can be difficult to see “;” when it appears by itself. See AV Rule
59 in Appendix A for examples.

AV Rule 60
Braces ("{}") which enclose a block will be placed in the same column, on separate lines
directly before and after the block.
Example:
 if (var_name == true)
 {
 }
 else
 {
 }

AV Rule 61
Braces ("{}") which enclose a block will have nothing else on the line except comments (if
necessary).

4.9.6 Pointers and References

AV Rule 62
The dereference operator ‘*’ and the address-of operator ‘&’ will be directly connected with
the type-specifier.

Rationale: The int32* p; form emphasizes type over syntax while the int32 *p; form
emphasizes syntax over type. Although both forms are equally valid C++, the heavy
emphasis on types in C++ suggests that int32* p; is the preferable form.
Examples:

int32* p; // Correct
int32 *p; // Incorrect
int32* p, q; // Probably error. However, this declaration cannot occur
 // under the one name per declaration style required by AV Rule 152.

4.9.7 Miscellaneous

AV Rule 63
Spaces will not be used around ‘.’ or ‘->’, nor between unary operators and operands.

Rationale: Readability and style.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

29

4.10 Classes
4.10.1 Class Interfaces

AV Rule 64
A class interface should be complete and minimal. See Meyers [6], item 18.

Rationale: A complete interface allows clients to do anything they may reasonably want to
do. On the other hand, a minimal interface will contain as few functions as possible (i.e. no
two functions will provide overlapping services). Hence, the interface will be no more
complicated than it has to be while allowing clients to perform whatever activities are
reasonable for them to expect.
Note: Overlapping services may be required where efficiency requirements dictate. Also, the

use of helper functions (Stroustrup [2], 10.3.2) can simplify class interfaces.

4.10.2 Considerations Regarding Access Rights
Roughly two types of classes exist: those that essentially aggregate data and those that provide
an abstraction while maintaining a well-defined state or invariant. The following rules provide
guidance in this regard.

AV Rule 65
A structure should be used to model an entity that does not require an invariant.

AV Rule 66
A class should be used to model an entity that maintains an invariant.

AV Rule 67
Public and protected data should only be used in structs—not classes.

Rationale: A class is able to maintain its invariant by controlling access to its data. However,
a class cannot control access to its members if those members non-private. Hence all data in
a class should be private.
Exception: Protected members may be used in a class as long as that class does not
participate in a client interface. See AV Rule 88.

4.10.3 Member Functions

AV Rule 68
Unneeded implicitly generated member functions shall be explicitly disallowed. See Meyers
[6], item 27.

Rationale: Eliminate any surprises that may occur as a result of compiler generated
functions. For example, if the assignment operator is unneeded for a particular class, then it
should be declared private (and not defined). Any attempt to invoke the operator will result
in a compile-time error. On the contrary, if the assignment operator is not declared, then
when it is invoked, a compiler-generated form will be created and subsequently executed.
This could lead to unexpected results.

rai
Highlight

smr
Highlight

smr
Highlight

smr
Highlight

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

30

Note: If the copy constructor is explicitly disallowed, the assignment operator should be as

well.)

4.10.4 const Member Functions

AV Rule 69
A member function that does not affect the state of an object (its instance variables) will be
declared const.

Member functions should be const by default. Only when there is a clear, explicit reason
should the const modifier on member functions be omitted.
Rationale: Declaring a member function const is a means of ensuring that objects will not be
modified when they should not. Furthermore, C++ allows member functions to be
overloaded on their const-ness.

4.10.5 Friends

AV Rule 70
A class will have friends only when a function or object requires access to the private
elements of the class, but is unable to be a member of the class for logical or efficiency
reasons.

Rationale: The overuse of friends leads to code that is both difficult to understand and
maintain.
AV Rule 70 in Appendix A provides examples of acceptable uses of friends. Note that the
alternative to friendship in some instances is to expose more internal detail than is necessary.
In those cases friendship is not only allowed, but is the preferable option.

4.10.6 Object Lifetime, Constructors, and Destructors

4.10.6.1 Object Lifetime
Conceptually, developers understand that objects should not be used before they have been
created or after they have been destroyed. However, a number of scenarios may arise where this
distinction may not be obvious. Consequently, the following object-lifetime rule is provided to
highlight these instances.

AV Rule 70.1
An object shall not be improperly used before its lifetime begins or after its lifetime ends.

Rationale: Improper use of an object, before it is created or after it is destroyed, results in
undefined behavior. See section 3.8 of [10] for details on “proper” vs. “improper” use. See
also AV Rule 70.1 in Appendix A for examples.

smr
Highlight

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

31

4.10.6.2 Constructors

AV Rule 71
Calls to an externally visible operation of an object, other than its constructors, shall not be
allowed until the object has been fully initialized.

Rationale: Avoid problems resulting from incomplete object initialization. Further details
are given in AV Rule 71 in Appendix A.

AV Rule 71.1
A class’s virtual functions shall not be invoked from its destructor or any of its constructors.

Rationale: A class’s virtual functions are resolved statically (not dynamically) in its
constructors and destructor. See AV Rule 71.1 in Appendix_A for additional details.

AV Rule 72
The invariant2 for a class should be:

• a part of the postcondition of every class constructor,
• a part of the precondition of the class destructor (if any),
• a part of the precondition and postcondition of every other publicly accessible

operation.
Rationale: Prohibit clients from influencing the invariant of an object through any other
means than the public interface.

AV Rule 73
Unnecessary default constructors shall not be defined. See Meyers [7], item 4. (See also AV
Rule 143).

Rationale: Discourage programmers from creating objects until the requisite data is
available for complete object construction (i.e. prevent objects from being created in a
partially initialized state). See AV Rule 73 in Appendix A for examples.

AV Rule 74
Initialization of nonstatic class members will be performed through the member initialization
list rather than through assignment in the body of a constructor. See Meyers [6], item 12.
Exception: Assignment should be used when an initial value cannot be represented by a
simple expression (e.g. initialization of array values), or when a name must be introduced
before it can be initialized (e.g. value received via an input stream).
See AV Rule 74 in Appendix A for details.

2 A class invariant is a statement-of-fact about a class that must be true for all stable instances of the class. A class is
considered to be in a stable state immediately after construction, immediately before destruction, and immediately
before and after any remote public method invocation.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

32

AV Rule 75
Members of the initialization list shall be listed in the order in which they are declared in the
class. See Stroustrup [2], 10.4.5 and Meyers [6], item 13.

Note: Since base class members are initialized before derived class members, base class

initializers should appear at the beginning of the member initialization list.

Rationale: Members of a class are initialized in the order in which they are declared—not
the order in which they appear in the initialization list.

AV Rule 76
A copy constructor and an assignment operator shall be declared for classes that contain
pointers to data items or nontrivial destructors. See Meyers [6], item 11.
Note: See also AV Rule 80 which indicates that default copy and assignment operators are

preferable when those operators offer reasonable semantics.

Rationale: Ensure resources are appropriately managed during copy and assignment
operations. See AV Rule 76 in Appendix A for additional details.

AV Rule 77
A copy constructor shall copy all data members and bases that affect the class invariant (a
data element representing a cache, for example, would not need to be copied).
Note: If a reference counting mechanism is employed by a class, a literal copy need not be

performed in every case. See also AV Rule 83.

Rationale: Ensure data members and bases are properly handled when an object is copied.
See AV Rule 77 in Appendix A for additional details.

AV Rule 77.1
The definition of a member function shall not contain default arguments that produce a
signature identical to that of the implicitly-declared copy constructor for the corresponding
class/structure.

Rationale: Compilers are not required to diagnose this ambiguity. See AV Rule 77.1 in
Appendix A for additional details.

4.10.6.3 Destructors

AV Rule 78
All base classes with a virtual function shall define a virtual destructor.

Rationale: Prevent undefined behavior. If an application attempts to delete a derived class
object through a base class pointer, the result is undefined if the base class’s destructor is
non-virtual.
Note: This rule does not imply the use of dynamic memory (allocation/deallocation from the

free store) will be used. See AV Rule 206.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

33

AV Rule 79
All resources acquired by a class shall be released by the class’s destructor. See Stroustrup
[2], 14.4 and Meyers [7], item 9.

Rationale: Prevention of resource leaks, especially in error cases. See AV Rule 79 in
Appendix A for additional details.

4.10.7 Assignment Operators

AV Rule 80
The default copy and assignment operators will be used for classes when those operators
offer reasonable semantics.

Rationale: The default versions are more likely to be correct, easier to maintain and efficient
than that generated by hand.

AV Rule 81
The assignment operator shall handle self-assignment correctly (see Stroustrup [2],
Appendix E.3.3 and 10.4.4)

Rationale: a = a; must function correctly. See AV Rule 81 in Appendix A for examples.

AV Rule 82
An assignment operator shall return a reference to *this.

Rationale: Both the standard library types and the built-in types behave in this manner. See
AV Rule 81 for an example of an assignment operator overload.

AV Rule 83
An assignment operator shall assign all data members and bases that affect the class invariant
(a data element representing a cache, for example, would not need to be copied).
Note: To correctly copy a stateful virtual base in a portable manner, it must hold that if x1

and x2 are objects of virtual base X, then x1=x2; x1=x2; must be semantically
equivalent to x1=x2; [10] 12.8(13)

Rationale: Ensure data members and bases are properly handled under assignment. See AV
Rule 83 in Appendix A for additional details. See also AV Rule 77.

4.10.8 Operator Overloading

AV Rule 84
Operator overloading will be used sparingly and in a conventional manner.

Rationale: Since unconventional or inconsistent uses of operator overloading can easily lead
to confusion, operator overloads should only be used to enhance clarity and should follow the
natural meanings and conventions of the language. For instance, a C++ operator "+=" shall
have the same meaning as "+" and "=".

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

34

AV Rule 85
When two operators are opposites (such as == and !=), both will be defined and one will be
defined in terms of the other.

Rationale: If operator==() is supplied, then one could reasonable expect that operator!=()
would be supplied as well. Furthermore, defining one in terms of the other simplifies
maintenance. See AV Rule 85 in Appendix A for an example.

4.10.9 Inheritance

Class hierarchies are appropriate when run-time selection of implementation is required. If
run-time resolution is not required, template parameterization should be considered
(templates are better-behaved and faster than virtual functions). Finally, simple independent
concepts should be expressed as concrete types. The method selected to express the solution
should be commensurate with the complexity of the problem.
The following rules provide additional detail and guidance when considering the structure of
inheritance hierarchies.

AV Rule 86
Concrete types should be used to represent simple independent concepts. See Stroustrup [2],
25.2.
Rationale: Well designed concrete classes tend to be efficient in both space and time, have
minimal dependencies on other classes, and tend to be both comprehensible and usable in
isolation.

AV Rule 87
Hierarchies should be based on abstract classes. See Stroustrup [2], 12.5.

Rationale: Hierarchies based on abstract classes tend to focus designs toward producing
clean interfaces, keep implementation details out of interfaces, and minimize compilation
dependencies while allowing alternative implementations to coexist. See AV Rule 87 in
Appendix A for examples.

AV Rule 88
Multiple inheritance shall only be allowed in the following restricted form: n interfaces plus
m private implementations, plus at most one protected implementation.

Rationale: Multiple inheritance can lead to complicated inheritance hierarchies that are
difficult to comprehend and maintain.
See AV Rule 88 in Appendix A for examples of both appropriate and inappropriate uses of
multiple inheritance.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

35

AV Rule 88.1
A stateful virtual base shall be explicitly declared in each derived class that accesses it.

Rationale: Explicitly declaring a stateful virtual base at each level in a hierarchy (where that
base is used), documents that fact that no assumptions can be made with respect to the
exclusive use of the data contained within the virtual base. See AV Rule 88.1 in Appendix A
for additional details.

AV Rule 89
A base class shall not be both virtual and non-virtual in the same hierarchy.

Rationale: Hierarchy becomes difficult to comprehend and use.

AV Rule 90
Heavily used interfaces should be minimal, general and abstract. See Stroustrup [2] 23.4.

Rationale: Enable interfaces to exhibit stability in the face of changes to their hierarchies.

AV Rule 91
Public inheritance will be used to implement “is-a” relationships. See Meyers [6], item 35.

Rationale: Public inheritance and private inheritance mean very different things in C++ and
should therefore be used accordingly. Public inheritance implies an “is-a” relationship. That
is, every object of a publicly derived class D is also an object of the base type B, but not vice
versa. Moreover, type B represents a more general concept than type D, and type D
represents a more specialized concept than type B. Thus, stating that D publicly inherits from
B, is an assertion that D is a subtype of B. That is, objects of type D may be used anywhere
that objects of type B may be used (since an object of type D is really an object of type B as
well).
In contrast to public inheritance, private and protected inheritance means “is-implemented-
in-terms-of”. It is purely an implementation technique—the interface is ignored. See also AV
Rule 93.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

36

AV Rule 92
A subtype (publicly derived classes) will conform to the following guidelines with respect to
all classes involved in the polymorphic assignment of different subclass instances to the same
variable or parameter during the execution of the system:

• Preconditions of derived methods must be at least as weak as the preconditions of the
methods they override.

• Postconditions of derived methods must be at least as strong as the postconditions of
the methods they override.

In other words, subclass methods must expect less and deliver more than the base class
methods they override. This rule implies that subtypes will conform to the Liskov
Substitution Principle.
Rationale: Predictable behavior of derived classes when used within base class contexts. See
AV Rule 92 in Appendix A for additional details.

AV Rule 93
“has-a” or “is-implemented-in-terms-of” relationships will be modeled through membership
or non-public inheritance. See Meyers [6], item 40.

Rationale: Public inheritance means “is-a” (see AV Rule 91) while nonpublic inheritance
means “has-a” or “is-implemented-in-terms-of”. See AV Rule 93 in Appendix A for
examples.

AV Rule 94
An inherited nonvirtual function shall not be redefined in a derived class. See Meyers [6],
item 37.

Rationale: Prevent an object from exhibiting “two-faced” behavior. See AV Rule 94 in
Appendix A for an example.

AV Rule 95
An inherited default parameter shall never be redefined. See Meyers [6], item 38.

Rationale: The redefinition of default parameters for virtual functions often produces
surprising results. See AV Rule 95 in Appendix A for an example.

AV Rule 96
Arrays shall not be treated polymorphically. See Meyers [7], item 3.

Rationale: Array indexing in C/C++ is implemented as pointer arithmetic. Hence, a[i] is
equivalent to a+i*SIZEOF(array element). Since derived classes are often larger than base
classes, polymorphism and pointer arithmetic are not compatible techniques.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

37

AV Rule 97
Arrays shall not be used in interfaces. Instead, the Array class should be used.

Rationale: Arrays degenerate to pointers when passed as parameters. This “array decay”
problem has long been known to be a source of errors.
Note: See Array.doc for guidance concerning the proper use of the Array class, including its

interaction with memory management and error handling facilities.

4.10.10Virtual Member Functions

AV Rule 97.1
Neither operand of an equality operator (== or !=) shall be a pointer to a virtual member
function.

Rationale: If either operand of an equality operator (== or !=) is a pointer to a virtual
member function, the result is unspecified [10], 5.10(2).

Several other sections have also touched on virtual member functions and polymorphism. Hence,
the following cross references are provided so that these rules may be accessed from a single
location: AV Rule 71, AV Rule 78, AV Rule 87-AV Rule 97, and AV Rule 221.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

38

4.11 Namespaces
AV Rule 98

Every nonlocal name, except main(), should be placed in some namespace. See Stroustrup
[2], 8.2.

Rationale: Avoid name clashes in large programs with many parts.

AV Rule 99
Namespaces will not be nested more than two levels deep.

Rationale: Simplicity and clarity. Deeply nested namespaces can be difficult to comprehend
and use correctly.

AV Rule 100
Elements from a namespace should be selected as follows:

• using declaration or explicit qualification for few (approximately five) names,
• using directive for many names.

Rationale: All elements in a namespace need not be pulled in if only a few elements are
actually needed.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

39

4.12 Templates
Templates provide a powerful technique for creating families of functions or classes
parameterized by type. As a result, generic components may be created that match corresponding
hand-written versions in both size and performance [2].
Although template techniques have proven to be both powerful and expressive, it may be unclear
when to prefer the use of templates over the use of inheritance. The following guidelines
provided by Stroustrup[2], 13.8, offer advice in this regard:

1. Prefer a template over derived classes when run-time efficiency is at a premium.
2. Prefer derived classes over a template if adding new variants without recompilation is

important.
3. Prefer a template over derived classes when no common base can be defined.
4. Prefer a template over derived classes when built-in types and structures with

compatibility constraints are important.

AV Rule 101
Templates shall be reviewed as follows:

1. with respect to the template in isolation considering assumptions or requirements
placed on its arguments.

2. with respect to all functions instantiated by actual arguments.
Note: The compiler should be configured to generate the list of actual template

instantiations. See AV Rule 101 in Appendix A for an example.
Rationale: Since many instantiations of a template can be generated, any review should
consider all actual instantiations as well as any assumptions or requirements placed on
arguments of instantiations.

AV Rule 102
Template tests shall be created to cover all actual template instantiations.

Note: The compiler should be configured to generate the list of actual template

instantiations. See AV Rule 102 in Appendix A for an example.
Rationale: Since many instantiations of a template can be generated, test cases should be
created to cover all actual instantiations.

AV Rule 103
Constraint checks should be applied to template arguments.

Rationale: Explicitly capture parameter constraints in code as well as produce
comprehensible error messages. See AV Rule 103 in Appendix A for examples.

AV Rule 104
A template specialization shall be declared before its use. See Stroustrup [2], 13.5.

Rationale: C++ language rule. The specialization must be in scope for every use of the type
for which it is specialized.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

40

Example:
template<class T> class List {…};
List<int32*> li;
template<class T> class List<T*> {…}; //Error: this specialization should be used for li
 // in the previous statement.

AV Rule 105
A template definition’s dependence on its instantiation contexts should be minimized. See
Stroustrup [2], 13.2.5 and C.13.8.

Rationale: Since templates are likely to be instantiated in multiple contexts with different
parameter types, any nonlocal dependencies will increase the likelihood that errors or
incompatibilities will eventually surface.

AV Rule 106
Specializations for pointer types should be made where appropriate. See Stroustrup [2], 13.5.

Rationale: Pointer types often require special semantics or provide special optimization
opportunities.

4.13 Functions
4.13.1 Function Declaration, Definition and Arguments

AV Rule 107 (MISRA Rule 68)
Functions shall always be declared at file scope.

Rationale: Declaring functions at block scope may be confusing.

AV Rule 108 (MISRA Rule 69)
Functions with variable numbers of arguments shall not be used.

Rationale: The variable argument feature is difficult to use in a type-safe manner (i.e.
typical language checking rules aren’t applied to the additional parameters).
Note: In some cases, default arguments and overloading are alternatives to the variable

arguments feature. See AV Rule 108 in Appendix A for an example.

AV Rule 109
A function definition should not be placed in a class specification unless the function is
intended to be inlined.

Rationale: Class specifications are less compact and more difficult to read when they
include implementations of member functions. Consequently, it is often preferable to place
member function implementations in a separate file. However, including the implementation
in the specification instructs the compiler to inline the method (if possible). Since inlining
short functions can save both time and space, functions intended to be inlined may appear in
the class specification. See AV Rule 109 in Appendix A for an example.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

41

AV Rule 110
Functions with more than 7 arguments will not be used.

Rationale: Functions having long argument lists can be difficult to read, use, and maintain.
Functions with too many parameters may indicate an under use of objects and abstractions.
Exception: Some constructors may require more than 7 arguments. However, one should
consider if abstractions are being underused in this scenario.

AV Rule 111
A function shall not return a pointer or reference to a non-static local object.

Rationale: After return, the local object will no longer exist.

AV Rule 112
Function return values should not obscure resource ownership.

Rationale: Potential source of resource leaks. See AV Rule 173 and AV Rule 112 in
Appendix A for examples.

4.13.2 Return Types and Values

AV Rule 113 (MISRA Rule 82, Revised)
Functions will have a single exit point.

Rationale: Numerous exit points tend to produce functions that are both difficult to
understand and analyze.
Exception: A single exit is not required if such a structure would obscure or otherwise
significantly complicate (such as the introduction of additional variables) a function’s control
logic. Note that the usual resource clean-up must be managed at all exit points.

AV Rule 114 (MISRA Rule 83, Revised)
All exit points of value-returning functions shall be through return statements.

Rationale: Flowing off the end of a value-returning function results in undefined behavior.

AV Rule 115 (MISRA Rule 86)
If a function returns error information, then that error information will be tested.

Rationale: Ignoring return values could lead to a situation in which an application continues
processing under the false assumption that the context in which it is operating (or the item on
which it is operating) is valid.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

42

4.13.3 Function Parameters (Value, Pointer or Reference)

AV Rule 116
Small, concrete-type arguments (two or three words in size) should be passed by value if
changes made to formal parameters should not be reflected in the calling function.

Rationale: Pass-by-value is the simplest, safest method for small objects of concrete type.
Note that non-concrete objects must be passed by pointer or reference to realize polymorphic
behavior. See rules AV Rule 117 and AV Rule 118.

AV Rule 117
Arguments should be passed by reference if NULL values are not possible:
AV Rule 117.1 An object should be passed as const T& if the function should not change

the value of the object.
AV Rule 117.2 An object should be passed as T& if the function may change the value of

the object.

Rationale: Since references cannot be NULL, checks for NULL values will be eliminated
from the code. Furthermore, references offer a more convenient notation than pointers.

AV Rule 118
Arguments should be passed via pointers if NULL values are possible:
AV Rule 118.1 An object should be passed as const T* if its value should not be modified.
AV Rule 118.2 An object should be passed as T* if its value may be modified.

Rationale: References cannot be NULL.

4.13.4 Function Invocation

AV Rule 119 (MISRA Rule 70)
Functions shall not call themselves, either directly or indirectly (i.e. recursion shall not be
allowed).

Rationale: Since stack space is not unlimited, stack overflows are possible.
Exception: Recursion will be permitted under the following circumstances:

1. development of SEAL 3 or general purpose software, or
2. it can be proven that adequate resources exist to support the maximum level of

recursion possible.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

43

4.13.5 Function Overloading

AV Rule 120
Overloaded operations or methods should form families that use the same semantics, share
the same name, have the same purpose, and that are differentiated by formal parameters.

Rationale: Inconsistent use of overloading can lead to considerable confusion. See AV Rule
120 in Appendix A for examples.

4.13.6 Inline Functions
Inline functions often offer a speed advantage over traditional functions as they do not
require the typical function call overhead. Functions are typically inlined when either the
function definition is included in the class declaration or the keyword inline precedes the
function definition.
Example A: Inlined since definition is Example B: Inlined because of the inline
 included in declaration. keyword

class Sample_class int32 foo (void);
{
 public: inline int foo (void)
 int32 get_data (void) {
 { …
 return data; }
 }
};

The C++ standard [10] provides the following information in regards to the use of inline
functions. These observations are not listed as AV Rules since they are C++ language rules.
1. An inline function shall be defined in every translation unit in which it is used and shall

have exactly the same definition in every case. (Note this observation implies that inline
function definitions should be included in header files.)

2. If a function with external linkage is declared inline in one translation unit, it shall be
declared inline in all translation units in which it appears; no diagnostic is required.

3. An inline function with external linkage shall have the same address in all translation
units.

4. A static local variable in an extern inline function always refers to the same object.
5. A string literal in an extern inline function is the same object in different translation units.

AV Rule 121
Only functions with 1 or 2 statements should be considered candidates for inline functions.

Rationale: The compiler is not compelled to actually make a function inline. Decision
criteria differ from one compiler to another. The keyword inline is simply a request for the
compiler to inline the function. The compiler is free to ignore this request and make a real
function call. See AV Rule 121 in Appendix A for additional details.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

44

AV Rule 122
Trivial accessor and mutator functions should be inlined.

Rationale: Inlining short, simple functions can save both time and space. See AV Rule 122
in Appendix A for an example.

AV Rule 123
The number of accessor and mutator functions should be minimized.

Rationale: Numerous accessors and mutators may indicate that a class simply serves to
aggregate a collection of data rather than to embody an abstraction with a well-defined state
or invariant. In this case, a struct with public data may be a better alternative (see section
4.10.2, AV Rule 65, and AV Rule 66).

AV Rule 124
Trivial forwarding functions should be inlined.

Rationale: Inlining short, simple functions can save both time and space.

4.13.7 Temporary Objects

AV Rule 125
Unnecessary temporary objects should be avoided. See Meyers [7], item 19, 20, 21.

Rationale: Since the creation and destruction of temporary objects that are either large or
involve complicated constructions can result in significant performance penalties, they
should be avoided. See AV Rule 125 in Appendix A for additional details.

4.14 Comments
Comments in header files are meant for the users of classes and functions, while comments in
implementation files are meant for those who maintain the classes.

Comments are often said to be either strategic or tactical. A strategic comment describes
what a function or section of code is intended to do, and is placed before the code. A tactical
comment describes what a single line of code is intended to do. Unfortunately, too many
tactical comments can make code unreadable. For this reason, comments should be primarily
strategic, unless trying to explain very complicated code (i.e. one should avoid stating in a
comment what is clearly stated in code).

AV Rule 126
Only valid C++ style comments (//) shall be used. See AV Rule 126 in Appendix A for
additional details concerning valid C++ style comments.

Rationale: A single standard provides consistency throughout the code.
Exception: Automatic code generators that cannot be configured to use the “//” form.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

45

AV Rule 127
Code that is not used (commented out) shall be deleted.

Rationale: No dead code is allowed.
Exception: Code that is simply part of an explanation may appear in comments.

AV Rule 128
Comments that document actions or sources (e.g. tables, figures, paragraphs, etc.) outside of
the file being documented will not be allowed.

Rationale: The comments in a file should require changes only when changes are necessary
to the file itself. Note that this rule does not preclude the documentation of valid assumptions
that may made be entities contained within the file.

AV Rule 129
Comments in header files should describe the externally visible behavior of the functions or
classes being documented.

Rationale: Exposing the internal workings of functions or classes to clients might enable
those clients to create dependences on the internal representations.

AV Rule 130
The purpose of every line of executable code should be explained by a comment, although
one comment may describe more than one line of code.

Rationale: Readability. Every line of code should be represented by a comment. However,
this rule does not say that every line of code should have a comment; a comment might
represent more than one source line of code.

AV Rule 131
One should avoid stating in comments what is better stated in code (i.e. do not simply repeat
what is in the code).

Rationale: While redundant comments are unnecessary, they also serve to increase the
maintenance effort.
Example: The following example illustrates an unnecessary comment.
 a = b+c; // Bad: add b to c and place the result in a.

AV Rule 132
Each variable declaration, typedef, enumeration value, and structure member will be
commented.

Exception: Cases where commenting would be unnecessarily redundant.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

46

AV Rule 133
Every source file will be documented with an introductory comment that provides
information on the file name, its contents, and any program-required information (e.g. legal
statements, copyright information, etc).

AV Rule 134
Assumptions (limitations) made by functions should be documented in the function’s
preamble.

Rationale: Maintenance efforts become very difficult if the assumptions (limitations) upon
which functions are built are unknown.

4.15 Declarations and Definitions
AV Rule 135 (MISRA Rule 21, Revised)

Identifiers in an inner scope shall not use the same name as an identifier in an outer scope,
and therefore hide that identifier.

Rationale: Hiding identifiers can be very confusing.
Example:

int32 sum = 0;
{
 int32 sum = 0; // Bad: hides sum in outer scope.
 …
 sum = f (x);
}

AV Rule 136 (MISRA Rule 22, Revised)
Declarations should be at the smallest feasible scope. (See also AV Rule 143).

Rationale: This rule attempts to minimize the number of live variables that must be
simultaneously considered. Furthermore, variable declarations should be postponed until
enough information is available for full initialization (i.e. a variable should never be placed in
a partly-initialized or initialized-but-not-valid state.) See AV Rule 136 in Appendix A for
examples.

AV Rule 137 (MISRA Rule 23)
All declarations at file scope should be static where possible.

Rationale: Minimize dependencies between translation units where possible. See AV Rule
137 in Appendix A for additional details.

AV Rule 138 (MISRA Rule 24)
Identifiers shall not simultaneously have both internal and external linkage in the same
translation unit.

Rationale: Avoid variable-name hiding which can be confusing. See AV Rule 138 in
Appendix A for further details.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

47

AV Rule 139 (MISRA Rule 27)
External objects will not be declared in more than one file. (See also AV Rule 39.)

Rationale: Avoid inconsistent declarations. See AV Rule 139 in Appendix A for further
details.
Note: This type of error will be caught by linkers, but typically later than is desired (i.e. the

inconsistency could exist in a different group’s build.) Normally this will mean
declaring external objects in header files which will then be included in all other files
that need to use those objects (including the files which define them).

AV Rule 140 (MISRA Rule 28, Revised)
The register storage class specifier shall not be used.

Rationale: Compiler technology is now capable of optimal register placement.

AV Rule 141
A class, structure, or enumeration will not be declared in the definition of its type.

Rationale: Readability. See AV Rule 141 in Appendix A for examples.

4.16 Initialization
AV Rule 142 (MISRA Rule 30, Revised)

All variables shall be initialized before use. (See also AV Rule 136, AV Rule 71, and AV
Rule 73, and AV Rule 143 concerning declaration scope, object construction, default
constructors, and the point of variable introduction respectively.)

Rationale: Prevent the use of variables before they have been properly initialized. See AV
Rule 142 in Appendix A for additional information.
Exception: Exceptions are allowed where a name must be introduced before it can be
initialized (e.g. value received via an input stream).

AV Rule 143
Variables will not be introduced until they can be initialized with meaningful values. (See
also AV Rule 136, AV Rule 142, and AV Rule 73 concerning declaration scope,
initialization before use, and default constructors respectively.)

Rationale: Prevent clients from accessing variables without meaningful values. See AV Rule
143 in Appendix A for examples.

AV Rule 144 (MISRA Rule 31)
Braces shall be used to indicate and match the structure in the non-zero initialization of
arrays and structures.

Rationale: Readability.
Example:

int32 a[2][2] = { {0,1} ,{2,3} };

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

48

AV Rule 145 (MISRA Rule 32)
In an enumerator list, the ‘=‘ construct shall not be used to explicitly initialize members
other than the first, unless all items are explicitly initialized.

Rationale: Mixing the automatic and manual allocation of enumerator values is error-prone.
Note that exceptions are allowed for clearly-defined standard conventions. See AV Rule 145
in Appendix A for additional details.

4.17 Types
AV Rule 146 (MISRA Rule 15)

Floating point implementations shall comply with a defined floating point standard.
The standard that will be used is the ANSI/IEEE Std 754 [1].

Rationale: Consistency.

AV Rule 147 (MISRA Rule 16)
The underlying bit representations of floating point numbers shall not be used in any way by
the programmer.

Rationale: Manipulating bits is error prone. See AV Rule 147 in Appendix A for additional
details.

AV Rule 148
Enumeration types shall be used instead of integer types (and constants) to select from a
limited series of choices.
Note: This rule is not intended to exclude character constants (e.g. ‘A’, ‘B’, ‘C’, etc.) from

use as case labels.

Rationale: Enhances debugging, readability and maintenance. Note that a compiler flag (if
available) should be set to generate a warning if all enumerators are not present in a switch
statement.

4.18 Constants
Section 4.6.2 contains additional details concerning constants and the use of enum and
#define.

AV Rule 149 (MISRA Rule 19)
Octal constants (other than zero) shall not be used.

Rationale: Any integer constant beginning with a zero (‘0’) is defined by the C++ standard
to be an octal constant. Due to the confusion this causes, octal constants should be avoided.
Note: Hexadecimal numbers and zero (which is also an octal constant) are allowed.

AV Rule 150
Hexadecimal constants will be represented using all uppercase letters.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

49

AV Rule 151
Numeric values in code will not be used; symbolic values will be used instead.

Rationale: Improved readability and maintenance.
Exception: A class/structure constructor may initialize an array member with numeric
values.

class A
{
 A()
 {
 coefficient[0] = 1.23; // Good
 coefficient[1] = 2.34; // Good
 coefficient[2] = 3.45; // Good
 }
 private:
 float64 coefficient[3]; // Cannot be initialized via the member initialization list.
};

Note: In many cases ‘0’ and ‘1’ are not magic numbers but are part of the fundamental logic
of the code (e.g. ‘0’ often represents a NULL pointer). In such cases, ‘0’ and ‘1’ may
be used.

AV Rule 151.1
A string literal shall not be modified.
Note that strictly conforming compilers should catch violations, but many do not.

Rationale: The effect of attempting to modify a string literal is undefined [10], 2.13.4(2).
See also AV Rule 151.1 in Appendix A for additional details.

4.19 Variables
AV Rule 152

Multiple variable declarations shall not be allowed on the same line.

Rationale: Increases readability and prevents confusion (see also AV Rule 62).

Example:
int32* p, q; // Probably error.
int32 first button_on_top_of_the_left_box, i; // Bad: Easy to overlook i

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

50

4.20 Unions and Bit Fields
AV Rule 153 (MISRA Rule 110, Revised)

Unions shall not be used.

Rationale: Unions are not statically type-safe and are historically known to be a source of
errors.
Note: In some cases, derived classes and virtual functions may be used as an alternative to

unions.

AV Rule 154 (MISRA Rules 111 and 112, Revised)
Bit-fields shall have explicitly unsigned integral or enumeration types only.

Rationale: Whether a plain (neither explicitly signed nor unsigned) char, short, int or long
bit-field is signed or unsigned is implementation-defined.[10] Thus, explicitly declaring a
bit-filed unsigned prevents unexpected sign extension or overflow.
Note: MISRA Rule 112 no longer applies since it discusses a two-bit minimum-length

requirement for bit-fields of signed types.

AV Rule 155
Bit-fields will not be used to pack data into a word for the sole purpose of saving space.
Note: Bit-packing should be reserved for use in interfacing to hardware or conformance to

communication protocols.
Warning: Certain aspects of bit-field manipulation are implementation-defined.

Rationale: Bit-packing adds additional complexity to the source code. Moreover, bit-packing
may not save any space at all since the reduction in data size achieved through packing is
often offset by the increase in the number of instructions required to pack/unpack the data.

AV Rule 156 (MISRA Rule 113)
All the members of a structure (or class) shall be named and shall only be accessed via their
names.

Rationale: Reading/writing to unnamed locations in memory is error prone.
Exception: An unnamed bit-field of width zero may be used to specify alignment of the next
bit-field at an allocation boundary. [10], 9.6(2)

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

51

4.21 Operators
AV Rule 157 (MISRA Rule 33)

The right hand operand of a && or || operator shall not contain side effects.

Rationale: Readability. The conditional evaluation of the right-hand side could be
overlooked. See AV Rule 157 in Appendix A for an example.

AV Rule 158 (MISRA Rule 34)
The operands of a logical && or || shall be parenthesized if the operands contain binary
operators.

Rationale: Readability. See AV Rule 158 in Appendix A for examples.

AV Rule 159
Operators ||, &&, and unary & shall not be overloaded. See Meyers [7], item 7.

Rationale: First, the behavior of the || and && operators depend on short-circuit evaluation
of the operands. However, short-circuit evaluation is not possible for overloaded versions of
the || and && operators. Hence, overloading these operators may produce unexpected results.
Next, if the address of an object of incomplete class type is taken, but the complete form of
the type declares operator&() as a member function, the resulting behavior is undefined. [10]

AV Rule 160 (MISRA Rule 35, Modified)
An assignment expression shall be used only as the expression in an expression statement.

Rationale: Readability. Assignment (=) may be easily confused with the equality (==). See
AV Rule 160 in Appendix A for examples.

AV Rule 162
Signed and unsigned values shall not be mixed in arithmetic or comparison operations.

Rationale: Mixing signed and unsigned values is error prone as it subjects operations to
numerous arithmetic conversion and integral promotion rules.

AV Rule 163
Unsigned arithmetic shall not be used.

Rationale: Over time, unsigned values will likely be mixed with signed values thus violating
AV Rule 162.

AV Rule 164 (MISRA Rule 38)
The right hand operand of a shift operator shall lie between zero and one less than the width
in bits of the left-hand operand (inclusive).

Rationale: If the right operand is either negative or greater than or equal to the length in bits
of the promoted left operand, the result is undefined. [10]

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

52

AV Rule 164.1
The left-hand operand of a right-shift operator shall not have a negative value.

Rationale: For e1 >> e2, if e1 has a signed type and a negative value, the value of (e1 >> e2) is
implementation-defined. [10]

AV Rule 165 (MISRA Rule 39)
The unary minus operator shall not be applied to an unsigned expression.

AV Rule 166 (MISRA Rule 40)
The sizeof operator will not be used on expressions that contain side effects.

Rationale: Clarity. The side-effect will not be realized since sizeof only operates on the type
of an expression: the expression itself will not be evaluated.

AV Rule 167 (MISRA Rule 41)
The implementation of integer division in the chosen compiler shall be determined,
documented and taken into account.

Rationale: If one or more of the operands of an integer division is negative, the sign of the
remainder is implementation defined. [10]
Note: For the Green Hills PowerPC C++ compiler, the sign of the remainder is the same as

that of the first operand. Also the quotient is rounded toward zero.

AV Rule 168 (MISRA Rule 42, Revised)
The comma operator shall not be used.

Rationale: Readability. See AV Rule 168 in Appendix A for additional details.

4.22 Pointers & References
AV Rule 169

Pointers to pointers should be avoided when possible.

Rationale: Pointers to pointers are a source of bugs and result in obscure code. Containers or
some other form of abstraction should be used instead (see AV Rule 97).

AV Rule 170 (MISRA Rule 102, Revised)
More than 2 levels of pointer indirection shall not be used.

Rationale: Multiple levels of pointer indirections typically produce code that is difficult to
read, understand and maintain.
Note: This rule leaves no room for using more than 2 levels of pointer indirection. The

word “shall” replaces the word “should” in MISRA Rule 102.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

53

AV Rule 171 (MISRA Rule 103)
Relational operators shall not be applied to pointer types except where both operands are of
the same type and point to:

• the same object,
• the same function,
• members of the same object, or
• elements of the same array (including one past the end of the same array).

Note that if either operand is null, then both shall be null. Also, “members of the same
object” should not be construed to include base class subobjects (See also AV Rule 210).

Rationale: Violations of the above rule may result in unspecified behavior [10], 5.9(2).

AV Rule 173 (MISRA Rule 106, Revised)
The address of an object with automatic storage shall not be assigned to an object which
persists after the object has ceased to exist.

Rationale: An object in a function with automatic storage comes into existence when a
function is called and disappears when the function is exited. Obviously if the object
disappears when the function exits, the address of the object is invalid as well. See Also AV
Rule 111 and AV Rule 112.

AV Rule 174 (MISRA Rule 107)
The null pointer shall not be de-referenced.

Rationale: De-referencing a NULL pointer constitutes undefined behavior. [10] Note that
this often requires that a pointer be checked for non-NULL status before de-referencing
occurs.

AV Rule 175
A pointer shall not be compared to NULL or be assigned NULL; use plain 0 instead.

Rationale: The NULL macro is an implementation-defined C++ null pointer constant that
has been defined in multiple ways including 0, 0L, and (void*)0. Due to C++’s stronger
type-checking, Stroustrup[2] advises the use plain 0 rather than any suggested NULL macro.

AV Rule 176
A typedef will be used to simplify program syntax when declaring function pointers.

Rationale: Improved readability. Pointers to functions can significantly degrade program
readability.

smr
Highlight

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

54

4.23 Type Conversions
AV Rule 177

User-defined conversion functions should be avoided. See Meyers [7], item 5.

Rationale: User-defined conversion functions may be called implicitly in cases where the
programmer may not expect them to be called. See AV Rule 177 in Appendix A for
additional details.

AV Rule 178
Down casting (casting from base to derived class) shall only be allowed through one of the
following mechanism:

• Virtual functions that act like dynamic casts (most likely useful in relatively simple
cases)

• Use of the visitor (or similar) pattern (most likely useful in complicated cases)

Rationale: Casting from a base class to a derived class is unsafe unless some mechanism is
provided to ensure that the cast is legitimate.
Note: Type fields shall not be used as they are too error prone.
Note: Dynamic casts are not allowed at this point due to lack of tool support, but could be

considered at some point in the future after appropriate investigation has been
performed for SEAL1/2 software. Dynamic casts are fine for general purpose
software.

AV Rule 179
A pointer to a virtual base class shall not be converted to a pointer to a derived class.

Rationale: Since the virtualness of inheritance is not a property of a base class, the layout of
a derived class object, referenced through a virtual base pointer, is unknown at compile time.
In essence, this type of downcast cannot be performed safely without the use of a
dynamic_cast or through virtual functions emulating a dynamic_cast.

AV Rule 180 (MISRA Rule 43)
Implicit conversions that may result in a loss of information shall not be used.

Rationale: The programmer may be unaware of the information loss. See AV Rule 180 in
Appendix A for examples.
Note: Templates can be used to resolve many type conversion issues. Also, any compiler

flags that result in warnings for value-destroying conversions should be activated.

rai
Highlight

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

55

AV Rule 181 (MISRA Rule 44)
Redundant explicit casts will not be used.

Rationale: Unnecessary casting clutters the code and could mask later problems if variable
types change over time.

AV Rule 182 (MISRA Rule 45)
Type casting from any type to or from pointers shall not be used.

Rationale: This type of casting can lead to undefined or implementation-defined behavior
(e.g. certain aspects of memory alignments are implementation-defined). Furthermore,
converting a pointer to an integral type can result in the loss of information if the pointer can
represent values larger than the integral type to which it is converted.
Exception 1: Casting from void* to T* is permissible. In this case, static_cast should be
used, but only if it is known that the object really is a T. Furthermore, such code should only
occur in low level memory management routines.
Exception 2: Conversion of literals (i.e. hardware addresses) to pointers.

Device_register input = reinterpret_cast<Device_register>(0XFFA);

AV Rule 183
Every possible measure should be taken to avoid type casting.

Rationale: Errors caused by casts are among the most pernicious, particularly because they
are so hard to recognize. Strict type checking is your friend – take full advantage of it.

AV Rule 184
Floating point numbers shall not be converted to integers unless such a conversion is a
specified algorithmic requirement or is necessary for a hardware interface.

Rationale: Converting a floating-point number to an integer may result in an overflow or
loss of precision. It is acceptable to explicitly cast integers to floating point numbers to
perform mathematical operations (with awareness of the possible real-time impacts as well as
overflow). If this is necessary, the deviation must clearly state how an overflow condition
cannot occur.

AV Rule 185
C++ style casts (const_cast, reinterpret_cast, and static_cast) shall be used instead of the
traditional C-style casts. See Stroustrup [2], 15.4 and Meyers [7], item 2.

Rationale: C-style casts are more dangerous than the C++ named conversion operators since
the C-style casts are difficult to locate in large programs and the intent of the conversion is
not explicit (i.e. (T) e could be a portable conversion between related types, a non-portable
conversion between unrelated types, or a combination of conversions).[0] See AV Rule 185
in Appendix A for additional details.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

56

4.24 Flow Control Structures
AV Rule 186 (MISRA Rule 52)

There shall be no unreachable code.

Note: For reusable template components, unused members will not be included in the object

code.

AV Rule 187 (MISRA Rule 53, Revised)
All non-null statements shall potentially have a side-effect.

Rationale: A non-null statement with no potential side-effect typically indicates a
programming error. See AV Rule 187 in Appendix A for additional information.

AV Rule 188 (MISRA Rule 55, Revised)
Labels will not be used, except in switch statements.

Rationale: Labels are typically either used in switch statements or are as the targets for goto
statements. See exception given in AV Rule 189.

AV Rule 189 (MISRA Rule 56)
The goto statement shall not be used.

Rationale: Frequent use of the goto statement tends to lead to code that is both difficult to
read and maintain.
Exception: A goto may be used to break out of multiple nested loops provided the
alternative would obscure or otherwise significantly complicate the control logic.

AV Rule 190 (MISRA Rule 57)
The continue statement shall not be used.

AV Rule 191 (MISRA Rule 58)
The break statement shall not be used (except to terminate the cases of a switch statement).

Exception: The break statement may be used to “break” out of a single loop provided the
alternative would obscure or otherwise significantly complicate the control logic.

AV Rule 192 (MISRA Rule 60, Revised)

All if, else if constructs will contain either a final else clause or a comment indicating why a
final else clause is not necessary.

Rationale: Provide a defensive strategy to ensure that all cases are handled by an else if
series. See AV Rule 192 in Appendix A for examples.
Note: This rule only applies when an if statement is followed by one or more else if’s.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

57

AV Rule 193 (MISRA Rule 61)
Every non-empty case clause in a switch statement shall be terminated with a break
statement.

Rationale: Eliminates potentially confusing behavior since execution will fall through to the
code of the next case clause if a break statement does not terminate the previous case clause.
See AV Rule 193 in Appendix A for an example.

AV Rule 194 (MISRA Rule 62, Revised)
All switch statements that do not intend to test for every enumeration value shall contain a
final default clause.

Rationale: Omitting the final default clause allows the compiler to provide a warning if all
enumeration values are not tested in a switch statement. Moreover, the lack of a default
clause indicates that a test for every case should be conducted. On the other hand, if all cases
are not tested for, then a final default clause must be included to handle those untested cases.
MISRA revised with shall replacing should.

AV Rule 195 (MISRA Rule 63)
A switch expression will not represent a Boolean value.

Rationale: An if statement provides a more natural representation.

AV Rule 196 (MISRA Rule 64, Revised)
Every switch statement will have at least two cases and a potential default.

Rationale: An if statement provides a more natural representation.

AV Rule 197 (MISRA Rule 65)
Floating point variables shall not be used as loop counters.

Rationale: Subjects the loop counter to rounding and truncation errors.

AV Rule 198
The initialization expression in a for loop will perform no actions other than to initialize the
value of a single for loop parameter. Note that the initialization expression may invoke an
accessor that returns an initial element in a sequence:

for (Iter_type p = c.begin() ; p != c.end() ; ++p) // Good
{
…
}

Rationale: Readability.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

58

AV Rule 199
The increment expression in a for loop will perform no action other than to change a single
loop parameter to the next value for the loop.

Rationale: Readability.

AV Rule 200
Null initialize or increment expressions in for loops will not be used; a while loop will be
used instead.

Rationale: A while loop provides a more natural representation.

AV Rule 201 (MISRA Rule 67, Revised)
Numeric variables being used within a for loop for iteration counting shall not be modified
in the body of the loop.

Rationale: Readability and maintainability.
MISRA Rule 67 was revised by changing should to shall.

4.25 Expressions
AV Rule 202 (MISRA Rule 50)

Floating point variables shall not be tested for exact equality or inequality.

Rationale: Since floating point numbers are subject to rounding and truncation errors, exact
equality may not be achieved, even when expected.

AV Rule 203 (MISRA Rule 51, Revised)
Evaluation of expressions shall not lead to overflow/underflow (unless required
algorithmically and then should be heavily documented).

Rationale: Expressions leading to overflow/underflow typically indicate overflow error
conditions. See also AV Rule 212.

AV Rule 204
A single operation with side-effects shall only be used in the following contexts:

1. by itself
2. the right-hand side of an assignment
3. a condition
4. the only argument expression with a side-effect in a function call
5. condition of a loop
6. switch condition
7. single part of a chained operation.

Rationale: Readability. See AV Rule 204 in Appendix A for examples.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

59

AV Rule 204.1 (MISRA Rule 46)
The value of an expression shall be the same under any order of evaluation that the standard
permits.

Rationale: Except where noted, the order in which operators and subexpression are
evaluated, as well as the order in which side effects take place, is unspecified [10], 5(4). See
AV Rule 204.1 in Appendix_A for examples.

AV Rule 205
The volatile keyword shall not be used unless directly interfacing with hardware.

Rationale: The volatile keyword is a hint to the compiler that an object’s value may change
in ways not specified by the language (e.g. object representing a hardware register). Hence,
aggressive optimizations should be avoided. [2]

4.26 Memory Allocation
AV Rule 206 (MISRA Rule 118, Revised)

Allocation/deallocation from/to the free store (heap) shall not occur after initialization.
Note that the “placement” operator new(), although not technically dynamic memory, may
only be used in low-level memory management routines. See AV Rule 70.1 for object
lifetime issues associated with placement operator new().

Rationale: repeated allocation (new/malloc) and deallocation (delete/free) from the free
store/heap can result in free store/heap fragmentation and hence non-deterministic delays in
free store/heap access. See Alloc.doc for alternatives.

AV Rule 207
Unencapsulated global data will be avoided.

Rationale: Global data is dangerous since no access protection is provided with respect to
the data.
Note: If multiple clients require access to a single resource, that resource should be

wrapped in a class that manages access to that resource. For example, semantic
controls that prohibit unrestricted access may be provided (e.g. singletons and
input streams). See AV_Rule_207_Appendix_A for examples.

4.27 Fault Handling
AV Rule 208

C++ exceptions shall not be used (i.e. throw, catch and try shall not be used.)

Rationale: Tool support is not adequate at this time.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

60

4.28 Portable Code
4.28.1 Data Abstraction

AV Rule 209 (MISRA Rule 13, Revised)
The basic types of int, short, long, float and double shall not be used, but specific-length
equivalents should be typedef’d accordingly for each compiler, and these type names used in
the code.

Rationale: Since the storage length of types can vary from compiler to compiler and
platform-to-platform, this rule ensures that code can be easily reconfigured for storage size
differences by simply changing definitions in one file. See AV Rule 209 in Appendix A for
additional details.
Exception: Basic types are permitted in low-level routines to assist in the management of
word alignment issues (e.g. memory allocators).
MISRA rule was changed from should to shall.

4.28.2 Data Representation

AV Rule 210
Algorithms shall not make assumptions concerning how data is represented in memory (e.g.
big endian vs. little endian, base class subobject ordering in derived classes, nonstatic data
member ordering across access specifiers, etc.)

Rationale: Assumptions concerning architecture-specific aspects are non-portable.
Exception: Low level routines that are expressly written for the purpose of data formatting
(e.g. marshalling data, endian conversions, etc.) are permitted.

AV Rule 210.1
Algorithms shall not make assumptions concerning the order of allocation of nonstatic data
members separated by an access specifier. See also AV Rule 210 on data representation.

Rationale: The order of allocation of nonstatic data members, separated by an access-
specifier, is unspecified [10], 9.2(12). See AV Rule 210.1 in Appendix_A for additional
details.

AV Rule 211
Algorithms shall not assume that shorts, ints, longs, floats, doubles or long doubles begin at
particular addresses.

Rationale: The representation of data types in memory is highly machine-dependent. By
allocating data members to certain addresses, a processor may execute code more efficiently.
Because of this, the data structure that represents a structure or class will sometimes include
holes and be stored differently in different process architectures. Code which depends on a
specific representation is, of course, not portable.
Exception: Low level routines that are expressly written for the purpose of data formatting
(e.g. marshalling data, endian conversions, etc.) are permitted.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

61

4.28.3 Underflow/Overflow

AV Rule 212
Underflow or overflow functioning shall not be depended on in any special way.

Rationale: Dependence on undefined language aspects leads to non-portable
implementations. See also AV Rule 203.

4.28.4 Order of Execution

AV Rule 213 (MISRA Rule 47, Revised)
No dependence shall be placed on C++’s operator precedence rules, below arithmetic
operators, in expressions.

Rationale: Readability. See AV Rule 213 in Appendix A for additional details.
MISRA Rule 47 changed by replacing should with shall.

AV Rule 214
Assuming that non-local static objects, in separate translation units, are initialized in a special
order shall not be done.

Rationale: Order dependencies lead to hard to find bugs. See AV Rule 214 in Appendix A
for additional details.

4.28.5 Pointer Arithmetic

AV Rule 215 (MISRA Rule 101)
Pointer arithmetic will not be used.

Rationale: The runtime computation of pointer values is error-prone (i.e. the computed value
may reference unintended or invalid memory locations). See AV Rule 97 and AV Rule 215
in Appendix A for additional information.
Exceptions: Objects such as containers, iterators, and allocators that manage pointer
arithmetic through well-defined interfaces are acceptable.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

62

4.29 Efficiency Considerations
AV Rule 216

Programmers should not attempt to prematurely optimize code. See Meyers [7], item 16.

Rationale: Early focus on optimization can result in sacrificing the clarity and generality of
modules that will not be the true bottlenecks in the final system. See AV Rule 216 in
Appendix A for additional details.

Premature optimization is the root of all evil – Donald Knuth

Note: This rule does not preclude early consideration of fundamental algorithmic and data
structure efficiencies.

See also AV Rule 125 and AV Rule 177 for performance recommendations.

4.30 Miscellaneous
AV Rule 217

Compile-time and link-time errors should be preferred over run-time errors. See Meyers [6],
item 46.

Rationale: Errors detected at compile/link time will not occur at run time.
Whenever possible, push the detection of an error back from run-time to link-time, and
preferably compile-time. See also AV Rule 103 and AV Rule 194.

AV Rule 218
Compiler warning levels will be set in compliance with project policies.

Rationale: Compilers can typically be configured to generate a useful set of warning
messages that point out potential problems. Information gleaned from these messages could
be used to resolve certain errors before they occur at runtime.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

63

5 TESTING
This section provides guidance when testing inheritance hierarchies that employ virtual
functions.

5.1.1 Subtypes
If D is a subtype of B, then instances of type D will function transparently in any context in
which instances of type B can exist. Thus it follows that all base class unit-level test cases must
be inherited by the test plan for derived classes. That is, derived classes must at least successfully
pass the test cases applicable to their base classes.3

AV Rule 219
All tests applied to a base class interface shall be applied to all derived class interfaces as
well. If the derived class poses stronger postconditions/invariants, then the new
postconditions /invariants shall be substituted in the derived class tests.

Rationale: A publicly-derived class must function transparently in the context of its base
classes.
Note: This rule will often imply that every test case appearing in the set of test cases

associated with a class will also appear in the set of test cases associated with each of
its derived classes.

5.1.2 Structure

AV Rule 220
Structural coverage algorithms shall be applied against flattened classes.

Rationale: Structural coverage reporting should be with respect to each class context—not a
summed across multiple class contexts. See AV Rule 220 in Appendix A for additional
details.
Note: When a class is viewed with respect to all of its components (both defined at the

derived level as well as inherited from all of its base levels) it is said to be flattened.

AV Rule 221
Structural coverage of a class within an inheritance hierarchy containing virtual functions
shall include testing every possible resolution for each set of identical polymorphic
references.

Rationale: Provide decision coverage for dispatch tables.

3 Note that subclass tests will often be extensions of the superclass tests.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

65

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

66

APPENDIX A

AV Rule 3
Cyclomatic complexity measures the amount of decision logic in a single software module. It
may be used for two related purposes: a measure of design complexity and an aid in testing.
First, cyclomatic complexity may be utilized throughout all phases of the software lifecycle,
beginning with design, to enhance software reliability, testability, and maintainability. Second,
cyclomatic complexity aids in the test planning process by approximating the number of tests
required for a given module. Cyclomatic complexity is a structural metric based entirely on
control flow through a piece of code; it is the number of non-repeating paths through the code.

Cyclomatic complexity (v(G)) is defined for each module to be:

v(G) = e - n + 2

where n represents ‘nodes’, or computational statements, and e represents ‘edges’, or the
transfer of control between nodes.

Below is an example of source code followed by a corresponding node diagram. In the node
diagram, statements are illustrated as rectangles, decisions as triangles and transitions between
statements as lines. The number of nodes is fourteen while the number of lines connecting the
nodes is seventeen for a complexity of five.

Another means of estimating complexity is also illustrated. The number of regions bounded by
the lines, including the “infinite” region outside of the function, is generally equivalent to the
computed complexity. The illustration has 5 disjoint regions; note that it is equal to the computed
complexity.

The illustration uses a multi-way decision or switch statement. Often, a switch statement may
have many cases causing the complexity to be high, yet the code is still easy to comprehend.
Therefore, complexity limits should be set keeping in mind the ultimate goals: sensible and
maintainable code.

Example: Source Code

void compute_pay_check (employee_ptr_type employee_ptr_IP,
 check_ptr_type chk_ptr_OP)
{
 //Calculate the employee’s federal, fica and state tax withholdings
 1. chk_ptr_OP->gross_pay = employee_ptr_IP->base_pay;
 2. chk_ptr_OP->ged_tax = federal_tax (employee_ptr_IP->base_pay);
 3. chk_ptr_OP->fica = fica (employee_ptr_IP->base_pay);
 4. chk_ptr_OP->state_tax = state_tax (employee_ptr_IP->base_pay);

 //Determine medical expense based on the employee’s HMO selection
 5. if (employee_ptr_IP->participate_HMO == true)

smr
Highlight

smr
Highlight

smr
Highlight

smr
Highlight

smr
Highlight

smr
Highlight

smr
Arrow

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

67

 {
 6. chk_ptr_OP->medical = med_expense_HMO;
 }
 else
 {
 7. chk_ptr_OP->medical = med_expense_non_HMO;
 }

 // Calc a profit share deduction based on % of employee’s gross pay
 8. if (employee_ptr_IP->participate_profit_share == true)
 {
 9. switch(employee_ptr_IP->profit_share_plan)
 {
 case plan_a:
 10. chk_ptr_OP->profit_share = two_percent * chk_ptr_OP->gross_pay;
 break;
 case plan_b:
 11. chk_ptr_OP->profit_share = four_percent * chk_ptr_OP->gross_pay;
 break;
 case plan_c:
 12. chk_ptr_OP->profit_share = six_percent * chk_ptr_OP->gross_pay;
 break;
 default:
 break;
 }
 }
 else
 {
 13. chk_ptr_OP->profit_share = zero;
 }

 chk_ptr_OP->net_pay = (chk_ptr_OP->gross_pay –
 chk_ptr_OP->fed_tax –
 chk_ptr_OP->fica –
 chk_ptr_OP->state_tax –
 chk_ptr_OP->medical –
 chk_ptr_OP->profit_share);
}

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

68

Example: Node Diagram

1

5

2

3

4

6 7

8

9

13

10 11 12

14

1

2

3

45

if

if

sw itch

N um ber o f d is jo in t reg ions = 5

N odes = 14
E dges = 17
C om plex ity = 17 - 14 + 2
 = 5

true fa lse

true fa lse

A

B

C

smr
Typewriter
For each test point: typical andboundary tests

smr
Highlight

smr
Callout
Nodes

smr
Callout
Edges

smr
Arrow

smr
Arrow

smr
Arrow

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

69

AV Rule 11
Trigraphs can lead to confusion when question marks are used. For example, the string:
 “Enter the date in the following form (??-??-????)”
would be interpreted as
 “Enter the date in the following form (~~??]”

AV Rule 12
The use of digraphs listed in this rule can obscure the meaning of otherwise simple
constructs. For example,
 int16 a <: 2 :> <: 2 :> = <%<%0,1%>,<%2,3%>%>;
is more simply written as
 int16 a[2][2] = { {0,1}, {2,3} };

AV Rule 15
For SEAL 1/2 applications, defensive programming checks are required. Defensive
programming is the practice of evaluating potential failure modes (due to hardware failures
and/or software errors) and providing safeguards against those failure modes. For SEAL 1/2
software, System Safety is required to define all the possible software hazards (conditions in
which software could contribute to the loss of system function). If the determination is made
from the system level that hazard mitigation will be in software, then software requirements
must be derived (from the identified software hazards) to define appropriate hazard
mitigations. During coding and subsequent code inspection, the code must be evaluated to
ensure that the defensive programming techniques implied by the hazard mitigation
requirements have been implemented and comply with the requirements. Examples where
defensive programming techniques are used include (but are not limited to) management of:

• arithmetic errors—Overflow, underflow, divide-by-zero, etc. (See also AV Rule 203)
• pointer arithmetic errors—A dynamically calculated pointer references an

unreasonable memory location. (See also AV Rule 215)
• array bounds errors—An array index does not lie within the bounds of the array. (See

also AV Rule 97)
• range errors—Invalid arguments passed to functions (e.g. passing a negative value to

the sqrt() function).

Note that explicit checks may not be required in all cases, but rather some other form of
analysis may be used that achieves the same end. Consider, for example, the following use of
container a. Notice that bounds errors are not possible by construction. Hence, array-access
bounds errors are managed without explicit checks.

const uint32 n = a.size();
for (uint32 i=0 ; i<n ; ++i)
{
 a[i] = i;

 }

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

70

AV Rule 29
Inline functions do not require text substitutions and are well-behaved when called with
arguments (e.g. type-checking is performed).

Example: Compute the maximum of two integers.

#define max (a,b) ((a > b) ? a : b) // Wrong: macro

inline int32 maxf (int32 a, int32 b) // Correct: inline function
{
 return (a > b) ? a : b;
}

y = max (++p,q); // Wrong: ++p evaluated twice

y=maxf (++p,q) // Correct: ++p evaluated once and type
 // checking performed. (q is const)

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

71

AV Rule 30
Since const variables follow scope rules, are subject to type checking, and do not require text
substitutions (which can be confusing or misleading), they are preferable to macros as
illustrated in the following example.
Example:

#define max_count 100 // Wrong: no type checking
const int16 max_count = 100; // Correct: type checking may be performed

Note: Integral constants can be eliminated by optimizers, but non-integral constants will not.
Thus, in the example above, max_count will not be laid down in the resulting image.

AV Rule 32

The exception to the rule involves template class and function definitions which may be
partitioned into separate header and implementation files. In this case, the implementation
file may be included as a part of the header file. Note that the implementation file is logically
part of the header and is not separately compilable as illustrated below.
Example:

File A.h:

#ifndef A_H
#define A_H

template< class T >
class A
{
public:
 void do_something();
};

#include <A.cpp>
#endif

File A.cpp:

template< class T >
A<T>::do_something()
{
 // do_something impelemtation
}

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

72

AV Rule 36
Unnecessary recompilation of source files should be eliminated when possible. In the
following example, each source file includes all header files without a determination of
which ones are actually required.
Example: All header files are included in the three source files regardless of which files are
actually required. This creates several problems:

1. Inability to limit compilation scope. That is, any change to one header file means
recompiling (and consequently retesting) each source file.

2. Unnecessarily long compilation times. The repeated compilation of unnecessary
header files will significantly increase the overall compilation time.

// File 1
#include <header1.h>
#include <header2.h> // Incorrect: unneeded
#include <header3.h> // Incorrect: unneeded
… // Source for file 1

// File 2
#include <header1.h> // Incorrect: unneeded
#include <header2.h>
#include <header3.h> // Incorrect: unneeded
… // Source for file 2

// File 3
#include <header1.h> // Incorrect: unneeded
#include <header2.h> // Incorrect: unneeded
#include <header3.h>
… // Source for file 3

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

73

AV Rule 38
The header files of classes that are only referenced via pointers or references need not be
included. Doing so often increases the coupling between classes, leading to increased
compilation dependencies as well as greater maintenance efforts. Forward declarations of
the classes in question (supplied by forward headers) can be used to limit implementation
dependencies, maintenance efforts and compile times.
Example A: This example unnecessarily includes header files creating additional
dependencies in the Operator interface.

// Operator.h
#include <LM_string.h> // Incorrect: creates unnecessary dependency
#include <Date.h> // Incorrect: creates unnecessary dependency
#include <Record.h> // Incorrect: creates unnecessary dependency

class Operator
{
 public:
 Operator (const LM_string &name,
 const Date &birthday,
 const Record &flying_record);

 LM_string get_name () const;
 int32 get_age () const;
 Record get_record () const;
 …
 private:
 Operator_impl *impl;
};

Example B: In contrast to Example A, Example B uses forward headers to forward declare
implementation classes used by Operator. Hence the Operator interface is not dependent on
any of the implementation classes.

// Operator.h The forward headers only contain declarations.
#include <LM_string_fwd.h>
#include <Date_fwd.h>
#include <Record_fwd.h>
#include <OperatorImpl.h>
class Operator
{
 public:
 Operator (const LM_string &name,
 const Date & birthday,
 const Record &flying_record);

 LM_string get_name() const;
 int32 get_age () const;
 record get_record () const;

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

74

 …
 private:
 Operator_impl *impl;
};

// Operator.cc
#include <Operator.h>
#include <Operator_impl.h> // Contains implementation details of the Operator object.
…
int32 Operator::get_age()
{
 impl->get_age();
}

AV Rule 39
Although header files should not contain non-const variable or function definitions in
general, inline functions and template definitions will often be included.
Example: Although definitions should, in general, be placed in .cpp files, a member function
defined inside a class declaration represents a suggestion to the compiler that the member
function should be inlined (if possible).

class Square
{
 public:
 float32 area() // The member function definition in the class declaration
 { // suggests to the compiler that the member function should be

 return length *width; // inlined.
 }

 private:
 float32 length;
 float32 width;
};

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

75

AV Rule 40
AV Rule 40 is intended to support the one definition rule (ODR). That is, only a single
definition for each entity in a program may exist. Hence, placing the declaration of a type
(included with its definition) in a single header file ensures that duplicate definitions are
identical.

Example A: Scattering the definition of a type throughout an application (i.e. in .cpp files)
increases the likelihood of non-unique definitions (i.e. violations of the ODR).

//s.cpp
class S // Bad: S declared in .cpp file.
{ // S could be declared differently in a
 int32 x; // separate .cpp file
 char y;
};

Example B: Placing the definition of S in two different header files provides an opportunity
for non-unique definitions (i.e. violation of the ODR).

//s.h
class S
{
 int32 x;
 char y;
};

// y.h
class S // Bad: S multiply defined in two different header files.
{
 int32 x;
 int32 y;

 };

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

76

AV Rule 42
AV Rule 42 indicates that expression-statements must be on separate lines. An expression
statement has the following form:
 expression-statement:
 expressionopt ;

All expressions in an expression-statement are evaluated and all side effects are completed
before the next statement is executed. The most common expression-statements are
assignments and function calls. [10]

Examples:
x = 7; y=3; // Incorrect: multiple expression statements on the same line.
a[i] = j[k]; i++; j++; // Incorrect: multiple expression statements on the same line.
a[i] = k[j]; // Correct.
i++;
j++;

Note that a for statement is a special case where conditionopt and expressionopt may appear on
the same line as expression-statement[10].

iteration-statement:
 while (condition) statement
 do statement while (expression) ;
 for (for-init-statement condition-opt ; expression-opt) statement

for-init-statement:
 expression-statement

 simple-declaration
Examples:
 for(i = 0 ; i < max ; ++i) fun(); // Incorrect: multiple expression statements on the same line.
 for(i = 0 ; i < max ; ++i) // Correct
 {
 foo();
 }

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

77

AV Rule 58
Examples: The following examples illustrate the proper way to declare functions with
multiple arguments.

int32 max (int32 a, int32 b) // Correct: two parameters may appear on the
{ // same line. Order is easily understood.
…
}
 // Incorrect: too many parameters on the same line.
 // Difficult to document parameters in this form
msg1_in (uint16 msg_ID, float32 rate_IO, uint32 msg_size, uint16 rcv_max_instances)
{
…
}

 // Correct form.
msg1_in (uint16 msg_ID, // Unique identifier that is the label for the message
 float32 rate_IO, // The desired rate for the message distributed
 uint32 msg_size, // Size in bytes of the message
 uint16 rcv_max_instances) // The maximum number of instances of this
 // message expected in a processing frame
{
…
}

AV Rule 59
As the following examples illustrate, the bodies of if, else if, else, while, do..while and for
statements should always be enclosed within braces. As illustrated in Example A, code added
at a later time will not be part of a block unless it is enclosed by braces. Furthermore, as
illustrated by Example B, “;” can be difficult to see by itself. Hence a block (even if empty)
is required after control flow primitives.
Example A:

if (flag == 1)
{
 success ();
}
else // Incorrect: log_error() was added at a later time
 clean_up_resources(); // but is not part of the block (even though
 log_error(); // it is at the proper indentation level).

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

78

Example B: A block, even if empty, is required after control flow primitives.
while (f(x)); // Incorrect: “;” is difficult to see.
while (f(x)) // Incorrect: “;” is difficult to see.
 ;
while (f(x)) // Correct
{
}

AV Rule 70
 AV Rule 70 indicates that friends may be used only when a function or object requires
access to the private elements of a class, but is unable to be a member of the class for logical
or efficiency reasons. The following three examples illustrate acceptable uses of friends.

Example A: operator<<()
Consider operator<<() and operator>>() where an implicit type conversion on the left-most
argument is often required. Since an implicit type conversion on the left-most argument of a
function can only be provided through non-member functions, operator<<() and
operator>>() must be implemented as friend functions.
The preferred C++ solution is to declare such functions (that are conceptually part of the
public interface) as non-member friends of the class. This solution provides both private
element access as well as implicit type conversions.

Example B: Binary operator overloads (+, -, *, /, etc.)
Consider the example provided by Stroustrup [2]. How can a matrix-vector multiplication
operation be provided without exposing the internal representation of the matrix or the
vector? Clearly, the function requires access to the internal representation of both the matrix
and the vector. Thus, the function cannot be a member of either one. However, if the function
is not a friend, then accessors and mutators must be supplied which expose the internal
representation (i.e. violate encapsulation). Hence, adding the friend function operator*() to
the public interface of both Matrix and Vector provides a clean, encapsulated approach.

class Matrix;

class Vector
{
 float32 v[4];
 // …
 friend Vector operator* (const matrix& m, const vector& v);
};

class Matrix {
 Vector v[4];
 // …
 friend Vector operator*(const Matrix& m, const Vector& v);
};

Vector operator*(const Matrix& m, const Vector& v)
{

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

79

 Vector r;

 for (int32 i=0 ; i<4 ; i++)
 {
 r.v[i] = 0;
 for(int32 j=0; j<4 ; j++)
 {
 r.v[i] += m.v[i].v[j] * v.v[j];
 }
 }

 return r;
}

Example C: External iterators.
Since an iterator may be required to modify the contents of an object within a container
(*iterator = value), it must be able to access the private portions of that object. Thus, if an
iterator is external to a class, it must be a friend.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

80

AV Rule 70.1
Conceptually, developers understand that objects should not be used before they have been
created or after they have been destroyed. However, a number of scenarios may arise where
this distinction may not be obvious. Consequently, a series of examples is provided to
highlight possible areas of confusion. In many cases, the C++ standard [10] is quoted and an
explanatory code segment is provided.

Example A: Exiting main().

main() should never exit independent of the application of which it is a part. Consider the
code sample below. When main() exits, the static object destructors are invoked. Hence, the
tasks created by main() cannot depend the existence those static objects.

int32 main()
{
 _main(); // Call static constructors (inserted by compiler)

// Application code begins
 initialize_task_1(); // Initialize tasks
 initialize_task_2();
 …
 initialize_task_n();
// Application code ends

 __call_dtors(); // Call static destructors (inserted by compiler)
}

// Tasks begin to run. However, static objects have been destroyed.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

81

Example B: Accessing a const Object During Construction.
Note that this scenario cannot occur without the use of global variables which are
prohibited by AV Rule 207.

During the construction of a const object, if the value of the object or any of its
subobjects is accessed through an lvalue that is not obtained, directly or indirectly, from
the constructor’s this pointer, the value of the object or subobject thus obtained is
unspecified. [10] 12.1(15)
struct C;
void no_opt(C*);
struct C
{
 int c;
 C() : c(0)
 {
 no_opt(this);
 }
};

const C cobj;
void no_opt(C* cptr)
{
 int i = cobj.c * 100 // value of cobj.c is unspecified
 cptr->c = 1;
 cout << cobj.c * 100 // value of cobj.c is unspecified
 << ’\n’;
}

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

82

Example C: Local Static Object with Non-Trivial Destructors.
If a function contains a local object of static storage duration that has been destroyed and
the function is called during the destruction of an object with static storage duration, the
program has undefined behavior if the flow of control passes through the definition of the
previously destroyed local object. [10] 3.6.3(2)
class A
{
 public:
 ~A() { … }
};

void foo()
{
 static A a; // Destructor of local static will be invoked on exit
}

class B
{
 public:
 ~B()
 {
 foo(); // Destructor of static calls function with local static which may
 } // already be destroyed.
};
static B B_var; // Destructor of static will be invoked on exit.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

83

Example D: Invocation of Member Function after Lifetime of Object has Ended.
Before the lifetime of an object has started but after the storage which the object will
occupy has been allocated or, after the lifetime of an object has ended and before the
storage which the object occupied is reused or released, any pointer that refers to the
storage location where the object will be or was located may be used but only in limited
ways. …if the object will be or was of a non-POD class type, the program has undefined
behavior if:

• the pointer is used to access a non-static data member or call a non-static member
function of the object, ... [10] 3.8(5)

struct B
{
 virtual void f();
 void mutate();
 virtual ~B();
 };

struct D1 : B
{
 void f()
};

struct D2 : B
{
 void f()
};

void B::mutate()
{
 new (this) D2; // reuses storage – ends the lifetime of *this
 f(); // undefined behavior
 ... = this; // OK, this points to valid memory
}
 // Note: placement new is only allowed in low-level memory
 // management routines (see AV Rule 206).

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

84

Example E: Storage Reuse does not Require Implicit Destructor Invocation.
For an object of a class type with a non-trivial destructor, the program is not required to
call the destructor explicitly before the storage which the object occupies is reused or
released; however, if there is no explicit call to the destructor or if a delete-expression
(5.3.5) is not used to release the storage, the destructor shall not be implicitly called and
any program that depends on the side effects produced by the destructor has undefined
behavior. [8] 3.8(4)
struct A
{
 ~A()
 {
 …non-trivial destructor
 }
};

struct B { … };

void c_03_06_driver()
{
 A a_obj;
 new (&a_obj) B(); // a_obj’s lifetime ended without calling
 … // nontrivial destructor.
}
 // Note: placement new is only allowed in low-level memory
 // management routines (see AV Rule 206).

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

85

Example F: Object of Original Type Must Occupy Storage for Implicit Destructor
Call.

If a program ends the lifetime of an object of type T with static (3.7.1) or automatic
(3.7.2) storage duration and if T has a non-trivial destructor, the program must ensure that
an object of the original type occupies that same storage location when the implicit
destructor call takes place; otherwise the behavior of the program is undefined. This is
true even if the block is exited with an exception. [10] 3.8(8)

class T { };

 struct B {
 ~B() { … };
 };

 void c_03_11_driver()
 {
 B b;
 new (&b) T; // B’s nontrivial dtor implicitly called on memory occupied by an
 // object of different type.
} //undefined behavior at block exit

 // Note: placement new is only allowed in low-level memory
 // management routines (see AV Rule 206).

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

86

Example G: Creating a New Object at the Storage Location of a const Object.
Creating a new object at the storage location that a const object with static or automatic
storage duration occupies or, at the storage location that such a const object used to
occupy before its lifetime ended results in undefined behavior. [10] 3.8(9)

struct B
{
 B() { … };
 ~B() { … };
};
const B b;
void c_03_12_driver()
{
 b.~B(); // A new object is created at the storage location that a const
 // object used to occupy before its lifetime ended. This results
 new (&b) const B; // in undefined behavior
}
 // Note: placement new is only allowed in low-level memory
 // management routines (see AV Rule 206).

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

87

Example H: Member Function in ctor-Initializer Invoked Before Bases are
Initialized.

If these operations (member function invocation, operand of typeid or dynamic_cast) are
performed in a ctor-initializer (or in a function called directly or indirectly from a ctor-
initializer) before all the mem-initializers for base classes have completed, the result of
the operation is undefined. [10] 12.6.2(8)

class A { public: A(int) { … }};

class B : public A
{
 int j;
 public:
 int f() { … };
 B() : A(f()), // Undefined: calls member function but base A is
 // is not yet initialized
 j(f()) { … } // Well-defined: bases are all initialized

 };

AV Rule 71
The intent of AV Rule 71 is to prevent an object from being used before it is in a fully
initialized state. This may occur in three cases:

1. a class constructor invokes an overridden method before the derived class (supplying
the method) has been fully constructed,

2. a class constructor invokes a public or protected method that requires the object to be
fully initialized as a pre-condition of method invocation, or

3. the constructor does not fully initialize the object allowing clients access to
uninitialized data.

In the first case, C++ will not allow overridden methods to resolve to their corresponding
subclass versions since the subclass itself will not have been fully constructed and thus, by
definition, will not exist. In other words, while the base class component of a derived class is
being constructed, no methods of the derived class can be invoked through the virtual method
mechanism. Consequently, constructors should make no attempt to employ dynamic binding
in any form.
Secondly, public (and in some cases protected) methods assume object initialization and
class invariants have been established prior to invocation. Thus, invocation of such methods
during object construction risks the use of uninitialized or invalid data since class invariants
can not be guaranteed before an object is fully constructed.
Finally, the constructor should fully initialize an object (see Stroustrup [2], Appendix E and
AV Rule 72). If for some reason the constructor cannot fully initialize an object, some
provision must be made (and documented in the constructor) to ensure that clients cannot
access the uninitialized portions of the object.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

88

AV Rule 71.1
The intent of AV Rule 71.1 is to clarify that a class’s virtual functions are resolved statically
in any of its constructors or its destructor. As a result, the placement of virtual functions in
constructors/destructors often leads to unexpected behavior.
Consider the examples below. In Example A, the virtual function does not exhibit
polymorphic behavior. In contrast, the same function is called in Example B. This time,
however, the scope resolution operator is used to clarify that the virtual function is statically
bound.

Example A:
class Base
{
 public:
 Base()
 {
 v_fun(); // Bad: virtual function called from constructor. Polymorphic
 } // behavior will not be realized.
 virtual void v_fun()
 {
 }
};

Example B:
class Base
{
 public:
 Base()
 {
 Base::v_fun(); // Good: scope resolution operator used to specify static
 } // binding
 virtual void v_fun()
 {
 }
};

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

89

AV Rule 73
A default constructor is a constructor that can be called without any arguments. Calling a
constructor without any arguments implies that objects can be created and initialized without
supplying external information from the point of call. Although this may be appropriate for
some classes of objects, there are others for which there is no reasonable means of
initialization without passing in external information. For this class of objects, the presence
of default constructors requires that additional logic be added to member functions to ensure
complete object initialization before operations are allowed to proceed. Hence, avoiding
gratuitous default constructors leads to less complex, more efficient operations on fully
initialized objects.
Consider the following examples where a Part must always have a SerialNumber. Example A
illustrates the code for a single method, getPartName(), that returns the name of the part
identified by a particular serial number. Note that additional logic must be added to the
member function getPartName() to determine if the part has been fully initialized. In
contrast, Example B does not have the unnecessary default constructor. The corresponding
implementation is cleaner, simpler, and more efficient.
Example A: Gratuitous default constructor.

class Part
{
 public:
 Part ()
 { serial_number =unknown;
 } // Default constructor:

 Part (int32 n) : serial_number(n) {}
 int32 get_part_name()
 {
 if (serial_number == unknown) // Logic must be added to check for
 { // uninitialized state
 return “”;
 }
 else
 {
 return lookup_name (serial_number);
 }
 private:
 int32 serialNumber;
 static const int32 unknown;
};

Example B: No gratuitous default constructor.
class Part
{
 public:
 Part (int32 n) : serial_number(n) {}
 int32 get_part_name () { return lookup_name (serial_number);}
 private:

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

90

 int32 serial_number;
}
;
Note: The absence of a default constructor implies certain restrictions for arrays and

template-based containers of such objects. See Meyers [7] for more specific
details.

AV Rule 74
Rationale: This rule stems from the following observations:

• Member initialization is the only option for const members.
• Member initialization is the only option for reference members.
• Member initialization is never less efficient and often more efficient than assignment.
• Member initialization tends to simplify maintenance of classes.

Example A: For class Rectangle with attributes length and width, the member initialization
list should be used to initialize both attributes.

Rectangle (float32 length_, float32 width_) : length(length_), width(width_)
{
}

Example B: Suppose that length and width cannot be represented as simple expressions (e.g.
they must be read from an input stream). In this case, the member initialization list cannot be
used.

Rectangle ()
{
 cin >> length >> width;
}

AV Rule 76
If an object contains a pointer to a data element, what should happen when that object is
copied? Should the pointer itself be copied and thus two different objects reference the same
data item, or should the data pointed to be copied? The default behavior is to copy the
pointer. This behavior, however, is often not the desired behavior. The solution is to define
both the copy constructor and assignment operator for such cases.
If clients should never be able to make copies of an object, then the copy constructor and the
assignment operator should be declared private (with no definition). This will prevent clients
from calling these functions as well as compilers from generating them.
Finally, a nontrivial destructor typically implies some form of resource cleanup. Hence, that
cleanup will most likely need to be performed during an assignment operation.
Note: There are some cases where the default copy and assignment operators do offer

reasonable semantics. For example, a function object holding a pointer to a member
function (e.g. std::mem_fun_t) may not require non-default behavior. For these cases,
see AV Rule 80.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

91

AV Rule 77
A class may contain many data members as well as exist within an inheritance hierarchy.
Hence the copy constructor must copy all members (that affect the class invariant), including
those in base classes, as in the following example:

class Base
{
 public:
 Base (int32 x) : base_member (x) { }

 Base (const Base& rhs) : base_member (rhs.base_member) {}

 private:
 int32 base_member;
};

class Derived : public Base
{
 public:
 Derived (int32 x, int32 y, int32 z) : Base (x),
 derived_member_1 (y),
 derived_member_2 (z) { }

 Derived(const Derived& rhs) : Base(rhs),
 derived_member_1 (rhs.derived_member_1),
 derived_member_2 (rhs.derived_member_2) { }

 private:
 int32 derived_member_1;
 int32 derived_member_2;
};

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

92

AV Rule 77.1
A particular ambiguity can arise with respect to compiler-supplied, implicit copy constructors
as noted in [10] 12.8(4):

If the class definition does not explicitly declare a copy constructor, one is declared implicitly.
Thus, for the class definition

struct X {
 X(const X&, int);
};

a copy constructor is implicitly-declared. If the user-declared constructor is later defined as

X::X(const X& x, int i =0) { /* ... */ }

then any use of X’s copy constructor is ill-formed because of the ambiguity; no diagnostic
is required.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

93

AV Rule 79
Releasing resources in a destructor provides a convenient means of resource management,
especially in regards to exceptional cases. Moreover, if it is possible that a resource could be
leaked, then that resource should be wrapped in a class whose destructor automatically cleans
up the resource.
Example A: Stroustrup [2] provides an example based on a file handle. Note that the

constructor opens the file while the destructor closes the file. Any
possibility that a client may “forget” to cleanup the resource is eliminated.

 class File_ptr // Raw file pointer wrapped in class to ensure
{ // resources are not leaked.
 public:
 File_ptr (const char *n, const char * a) { p = fopen(n,a); }
 File_ptr (FILE* pp) { p = pp; }

 ~File_ptr ()
 {
 if (p)
 {
 fclose(p)
 };
 } // Clean up file handle.

 …
 private:
 FILE *p;
};

use_file (const char *file_name)
{ // Client does not have to remember to clean up file handle
 File_ptr f(fn,”r”); // (impossible to leak file handles).
 // use f
} // f goes out of scope so the destructor is called,

 // cleaning up the file handle.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

94

AV Rule 81
Self-assignment must be handled appropriately by the assignment operator. Example A
illustrates a potential problem, whereas Example B illustrates an acceptable approach.
Example A: Although it is not necessary to check for self-assignment in all cases, the
following example illustrates a context where it would be appropriate.

Base &operator= (const Base &rhs)
{
 release_handle (my_handle); // Error: the resource referenced by myHandle is
 my_handle = rhs.myHandle; // erroneously released in the self-assignment case.
 return *this;
}

Example B: One means of handling self-assignment is to check for self-assignment before
further processing continues as illustrated below.

Base &operator= (const Base& rhs)
{
 if (this != &rhs) // Check for self assignment before continuing.
 {
 release_handle(my_handle); // Release resource.
 my_handle = rhs.my_handle; // Assign members (only one member in class).
 }
 else
 {
 }
 return *this;

 }

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

95

AV Rule 83
A class may contain many data members as well as exist within an inheritance hierarchy.
Hence the assignment operator must assign all members, including those in base classes,
which affect the class invariant as in the following example:
Note: Definition of operator=() is included in the class declaration to simplify the

explanation of this rule. It breaks the “no function definition in class declaration”
rule.

class Base
{
 public:
 Base (int32 x) : base_member (x) {}

 Base &operator=(const Base& rhs)
 {
 if (this != &rhs) // Check for self assignment before continuing.
 {
 base_member = rhs.base_member; // Assign members (only one member in class).
 }
 else
 {
 }
 return *this;
 }

 private:
 int32 base_member;
};

class Derived : public Base
{
 public:
 Derived (int32 x, int32 y, int32 z) : Base (x),
 derived_member_1 (y),
 derived_member_2 (z) {}

 Derived& operator=(const Derived& rhs)
 {
 if (this != &rhs) // Check for self-assignment
 {
 Base::operator=(rhs); // Copy base class elements.
 derived_member_1 = rhs.derived_member_1; // Assign all members of derived class
 derived_member_2 = rhs.derived_member_2;
 }
 else
 {
 }

 return *this;
 }

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

96

 private:
 int32 derived_member_1;
 int32 derived_member_2;
};

AV Rule 85
The following example illustrates how operator!=() may be defined in terms of
operator==(). This construction simplifies maintenance.

bool operator==(Sometype a)
{
 if ((a.attribute_1 == attribute_1) &&
 (a.attribute_2 == attribute_2) &&
 (a.attribute_3 == attribute_3) &&
 ...
 (a.attribute_n == attribute_n))
 {
 return true;
 }
 else
 {
 return false;
 }

bool operator!=(Some_type a)
{
 return !(*this==a); //Note “!=” is defined in terms of "=="

 }

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

97

AV Rule 87
Hierarchies based on abstract classes are preferred. Therefore the hierarchies at the top of the
diagram are preferred over the hierarchy at the bottom of the diagram.

Users

Interface

D1 D2

Impl

Interface

Impl

D1 D2

Base
Interface
& Data

D1 D2

Users
Users

Abstract class
hierarchies

Non abstract
class hierarchy

Hierarchies based on abstract
classes are preferred.

Public inheritance

Private/protected
inheritance

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

98

AV Rule 88
In the context of this rule, an interface is specified by a class which has the following
properties:

• it is intended to be an interface,
• its public methods are pure virtual functions, and
• it does not hold any data, unless those data items are small and function as part of the

interface (e.g. a unique object identifier).

Note 1: Protected members may be used in a class as long as that class does not
participate in a client interface.

Note 2: Classes with additional state information may be used as bases provided
composition is performed in a disciplined manner with templates (e.g. policy-
based design). See the “Programming with Policies” paragraph below.

The following diagrams illustrate both good and bad examples of multiple inheritance.

Implementers

interface
class

implementation implementation implementation

derived
class

Public inheritance
Private/protected
inheritance

Good: Two interfaces, two private implementations,
 and one protected implementation.

interface
class

Private inheritance
Users

interface
class

interface
class

interface
class

interface
class

implementation

derived
class

…

1 2 3 n 1

Public inheritance

Private/protected
inheritance

Good: n interfaces and one protected implementation.

Users Implementers

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

99

Public inheritance

Protected/private
inheritance

Private inheritance

Good: D1 has one interface and one implementation.
 D2 has two interfaces and one implementation.

Users

Implementers

interface
class

D2

interface
class

Impl

D1

D1

Impl

D2

Impl

interface
class

Public inheritance

Protected/private
inheritance

Private inheritance

Good: Both D1 and D2 have one interface and one
 implementation.

Implementers Users

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

100

Virtual base classes: The following diagram illustrates the difference between virtual and
non-virtual base classes. The subsequent diagram illustrates legitimate uses of virtual base
classes.

Base

Der1 Der2

Join

class Base {…};
class Der1 : public Base {…};
class Der2 : public Base {…};
class Join : public Der1, public Der2 {…};

Base

Der1 Der2

Join

Base

class Base {…};
class Der1 : public virtual Base {…};
class Der2 : public virtual Base {…};
class Join : public Der1, public Der2 {…};

Virtual base Non-virtual
bases

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

101

Interface

Der1 Der2

Join

Shared
Impl
(data)

Der1 Der2

Join

Users

Interface 1 Interface 2

Users

Public inheritance

Private/protected
inheritance

Good: Both hierarchies are acceptable. Note the
 Implementation class in the right hierarchy
 should not be directly used by clients.

Implementers

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

102

Protected data in class interface: As previously mentioned, protected data may be used in a
class as long as that class does not participate in a client interface. The following diagram
illustrates this point.

Interface
& data

D1 D2 D3

Protected dataUsers

Bad: Derived classes (D1, D2, or D3) may hijack
 the base class invariant since they have access
 to the base class protected data.

Public inheritance

Private/protected
inheritance

Shared
Impl

D1 D2 D3

Protected data

Users

Good: The base class is an implementation class. Non-public inheritance prevents
 derived classes from being implicitly converted to the base class type. Hence users
 may only manipulate the derived classes through the derived class interfaces.

Public inheritance

Private/protected
inheritance

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

103

Policy-based Design
As previously mentioned, classes with additional state information may be used as bases
provided composition is performed in a disciplined manner with templates (e.g. policy-based
design). A form of programming that is used when classes must be customizable but
efficiency is paramount is called policy programming. When a class’ functionality can be
separated into a set of independent concerns and each concern can be programmed in more
than one way, policy programming is very useful. In particular, it simplifies maintenance by
avoiding replication of code. A classic example is a matrix math package. The concerns are
as follows:

• Access – how are the elements laid out in memory? Some possibilities are row
major, column major, and upper triangular.

• Allocation – from where does the memory come? Some possibilities are the system
heap, a fixed area, or allocated by a user-specified allocation scheme.

• Error Handling – what is done when an error occurs? Some possibilities are to throw
an exception, log an error message, set an error code, or restart the process.

These concerns are independent of one another and can be coded separately. For example:

template< class T >
class Row_major
{
 public:
 typedef T value_type;
 Row_major(int32 nrows, int32 ncols, T* array) :
 nrows_(nrows), ncols_(ncols), array_(array)
 {}
 ~Row_major() {}
 int32 size1() const { return nrows_; }
 int32 size2() const { return ncols_; }
 const T& operator() (int32 i, int32 j) const { return array_[i*ncols_+j]; }
 T& operator() (int32 i, int32 j) { return array_[i*ncols_+j]; }

 private:
 int32 nrows_;
 int32 ncols_;
 T* array_;
};

The class Column_major would be very similar except that the parenthesis operator would
return array_[j*nrows_+i].

Rather than create code for each possible combination of concerns, we create a template class
that brings together implementations for each concern. Thus, assuming that:

• Access defines the parenthesis operator,
• Alloc defines the template method

T* allocate<T>(int32 n) , and
• Err defines the following methods

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

104

void handle_error(int32 code, int32 nr, int32 nc)
void handle_error(int32 code, int32 i, int32 j, int32 nr, int32 nc)

we can compose the Matrix class as follows:

template< class Access, class Alloc, class Err >
class Matrix : public Access, Alloc, Err // Alloc and Err are private bases
{
 Matrix(int32 nrows, int32 ncols) :
 Access(nrows,ncols,allocate<T>(nrows*ncols))
 {
 if(array_==0)
 {
 handle_error(Err::allocation_failed, nrows, ncols);
 }
 }

 Access::value_type& at(int32 i, int32 j)
 {
 if(i<0 || i>nrows_ || j<0 || j>ncols_)
 {
 handle_error(Err::index_out_of_bounds, i, j, nrows_, ncols_);
 i = j = 0;
 }
 return this->operator()(i,j);
 }

 // and so on...
};

Thus, the Matrix class brings all the policies together into a functional class. Users may
create

• Matrix< Row_major, Heap, Exceptions > or
• Matrix< Lower_triangular, Pool_allocation, Restart >

as dictated by their needs.

Note that the Matrix class could have been written where Access, Alloc, and Err exist as data
members of Matrix rather than deriving from it. This technique has several drawbacks including
the necessity of creating (and maintaining) a large number of forwarding functions as well as
inferior performance characteristics.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

105

AV Rule 88.1
Stateful virtual bases should be rarely used and only after other design options have been
carefully weighed. Stateful virtual bases do introduce a concern with respect to non-exclusive
access to shared data. However, this concern is not unique to stateful virtual bases. On the
contrary, it is present in any form of aliasing. For example, two pointers that point to a single
data object suffer from the same condition, but this situation is arguably worse since there are
no declarations in the system to highlight this form of aliasing (as there are for virtual bases).

Stateful virtual bases are theoretically important since they provide the only explicit means of
sharing data within a class hierarchy without transitioning to a brittle, single-rooted hierarchy
employing stateful bases. The other alternative is simpler and uglier yet: give each class that
needs access to shared data a pointer to (1) a part of the object or to (2) a separate object -
thus "simulating" a virtual base. In essence, a stateful virtual base should be used only to
avoid the implicit sharing of data via pointers or references.

Consider the following hierarchy:

 A
 / \
 B C
 | |
 D E
 \ /
 F

AV Rule 88.1 would make the fact that A is a virtual base explicit not only in the declarations
of B and C, but also in the declarations of D, E, and F (assuming D, E, and F all access A):

struct A {};
struct B : virtual A {};
struct C : virtual A {};
struct D : B, virtual A {};
struct E : C, virtual A {};
struct F : D, E, virtual A {};

Consequently, the sharing of data is explicitly documented. The alternative:
struct A {};
struct B : virtual A {};
struct C : virtual A {};
struct D : B {}; // Violation of 88.1
struct E : C {}; // Violation of 88.1
struct F : D, E {}; // Violation of 88.1

can be obscure. That is, it is not obvious that D and E do not have exclusive access to A.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

106

AV Rule 92
AV Rule 92 specifies that subtypes should conform to the Liskov Substitution Principle
(LSP) which states:

…for each object o1 of type S there is an object o2 of type T such that for all
programs P defined in terms of T, the behavior of P is unchanged when o1 is
substituted for o2 then S is a subtype of T [5].

More simply put, the LSP suggests that a pointer or reference to a derived type may be
substituted anywhere one of its base types is used without the context being aware of the
substitution. Following this important principle will ensure that functions/modules can be
constructed without requiring the context of a base class to be aware of all current and future
derivatives of that base class. In other words, class hierarchies may be constructed so that
new extensions/specializations will not break or yield surprise results when used in existing
applications.
For example, should Penguin be derived from the base class, Bird, that contains the fly()
operation? The precondition (all birds can fly) for the base class, Bird, is stronger than the
precondition (I can’t fly) of the derived class, Penguin. Hence, Penguin is not a subtype of
Bird, and therefore should not be publicly derived from Bird.

AV Rule 93
Example A illustrates the class Person that is constructed with members Name, Address, and
PhoneNumber. Hence, the functionality of Person is implemented in terms of the member
elements (Name, Address, and PhoneNumber).

Example A:
class Person
{
 private:
 string name; // Person is composed of members Name, Address, and
 // PhoneNumber
 string address;
 string phone_number;
…
};

In general, membership should be used except where access to protected members or virtual
methods is required. In these situations, membership will not work. Instead, non-public
inheritance should be used. Consider the GenericStack example provided by Meyers [6], item
43. One may reuse the GenericStack implementation for stacks of any type as illustrated in
Example B. Note, however, that the GenericStack implementation is “too dangerous” to be
used by it self. Instead, type-safe interfaces are supplied through a template class. The
GenericStack’s methods are declared protected to prevent the use of this class in isolation
from a type-safe interface. As a result, derived classes must make use of GenericStack’s
protected members via inheritance rather than class membership.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

107

Example B:
class Generic_stack
{
 protected: // Methods are protected so that Generic_stack
 // cannot be used by itself.
 Generic_stack();
 ~Generic_stack();

 void push (void *object);
 void * pop (void);
 bool empty () const;
 private:
…
};

A type-safe interface for GenericStack may be implemented as:
template<class T>

class Stack: private Generic_stack // Reuse base class implementation
{
 public:
 void push (T *object_ptr) { GenericStack::push (object_ptr); }
 T * pop (void) { return static_cast<T*>(Generic_stack::pop()); }
 bool empty () const { return Generic_stack::empty(); }
};

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

108

AV Rule 94
Nonvirtual functions are statically bound. In essence, a nonvirtual function will hide its
corresponding base class version. Hence a single derived class object may behave either as a
base class object or as a derived class object depending on the way in which it was
accessed—either through a base class pointer/reference or a derived class pointer/reference.
To avoid this duality in behavior, nonvirtual functions should never be redefined.

Example:
class Base
{
 public:
 mf (void);
};

class Derived : public Base
{
 public:
 mf (void);
};
example_function(void)
{
 Derived derived;
 Base* base_ptr = &derived; // Points to derived
 Derived* derived_ptr = &derived; // Points to derived

 base_ptr->mf(); // Calls Base::mf() *** Different behavior for same object!!
 derived_ptr->mf(); // Calls Derived::mf()
}

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

109

AV Rule 95
While C++ dynamically binds virtual methods, the default parameters of those methods are
statically bound. Hence, the draw() method of the derived type (Circle), if referenced through
a base type pointer (Shape *), will be invoked with the default parameters of the base type
(Shape).

Example A:
enum Shape_color { red, green, blue };
class Shape
{
 public:
 virtual void draw (Shape_color color = green) const;
 …
}
class Circle : public Shape
{
 public:
 virtual void draw (Shape_color color = red) const;
 …
}
void fun()
{
 Shape* sp;

 sp = new Circle;
 sp->draw (); // Invokes Circle::draw(green) even though the default
} // parameter for Circle is red.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

110

AV Rule 101 and AV Rule 102
Since many template instantiations may be generated, the compiler should be configured to
provide a list of actual instantiations for review and testing purposes. The following table
illustrates the output of a Stack class that was instantiated for both float32 and int32 types.
Note that the method instantiations are listed so that a complete test plan may be constructed.

Template Parameter Type Library/Module
Stack<T1>::Stack<float32>(int) [with T1=float32] shape_hierarchy.a(shape_main.o)
Stack<T1>::Stack<int32>(int) [with T1=int32] shape_hierarchy.a(shape_main.o)
T1 Stack<T1>::pop() [with T1=float32] shape_hierarchy.a(shape_main.o)
T1 Stack<T1>::pop() [with T1=int32] shape_hierarchy.a(shape_main.o)
void Stack<T1>::push(T1) [with T1=float32] shape_hierarchy.a(shape_main.o)
void Stack<T1>::push(T1) [with T1=int32] shape_hierarchy.a(shape_main.o)

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

111

AV Rule 103
Stroustrup [4] provides a solution (for creating template parameter constraints) that requires
minimal effort, requires no additional code to be generated, and causes compilers to produce
acceptable error messages (including the word constraint).
Moreover, Stroustrup provides the following sample constraints that check the ability of
template parameters to engage in derivations, assignments, comparisons and multiplications.
(Note that the following elements are good candidates for a constraints library.)

template<class T, class B> struct Derived_from {
 static void constraints(T* p) { B* pb = p; }
 Derived_from() { void(*p)(T*) = constraints; }
};

template<class T1, class T2> struct Can_copy {
 static void constraints(T1 a, T2 b) { T2 c = a; b = a; }
 Can_copy() { void(*p)(T1,T2) = constraints; }
};

template<class T1, class T2 = T1> struct Can_compare {
 static void constraints(T1 a, T2 b) { a==b; a!=b; a<b; }
 Can_compare() { void(*p)(T1,T2) = constraints; }
};

template<class T1, class T2, class T3 = T1> struct Can_multiply {
 static void constraints(T1 a, T2 b, T3 c) { c = a*b; }
 Can_multiply() { void(*p)(T1,T2,T3) = constraints; }
};

Thus, given the Can_copy constraint above, a draw_all() function may be written that
asserts, at compile time, that only containers comprised of pointers to Shape or pointers to a
classes publicly derived from Shape (or convertible to Shape) may be passed in.

template<class Container>
void draw_all(Container& c)
{
 typedef typename Container::value_type T;
 Can_copy<T,Shape*>(); // accept containers of only Shape*’s
 for_each(c.begin(),c.end(),mem_fun(&Shape::draw));
}

Additional constraints may be easily created. See [4] for further information concerning
constraint creation and use.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

112

AV Rule 108
The following example illustrates a case where function overloading or parameter defaults
may be used instead of an unspecified number of arguments.
Example A: Consider a function to compute the length of two, three, or four dimensional
vectors. A variable argument list could be used, but introduces unnecessary complexities.
Alternatively, function overloading or parameter defaulting provide much better solutions.

// Unspecified number of arguments

float32 vector_length (float32 x, float32 y, …); // Error prone
// Function overloading

float32 vector_length (float32 x, float32 y);
float32 vector_length (float32 x, float32 y, float32 z);
float32 vector_length (float32 x, float32 y, float32, z, float32 w);

// Default parameters
float32 vector_length (float32 x, float32 y, float32 z=0, float32 w=0);

AV Rule 109
In the following example, Square declares two functions area() and morph(). Since the
designer wants to inline the relatively simple method area(), it is defined within the class
specification. In contrast, there is no intent to inline the complex method morph(). Hence
only the method declaration is included.

class Square : public Shape
{
 public:
 float32 area()
 {
 return length*width;
 } // area() will be inlined since it is defined
 // in the class specification.

 morph (Shape &s); // morph() is not intended to be inlined so its
}; // implementation is contained in a separate file.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

113

AV Rule 112
The following examples illustrate several ways in which function return values can obscure
resource ownership and hence risk resource leakage. Note in the following examples, new
need not allocate memory from the heap, but could be overloaded on the class in question.
Example A: Returning a dereferenced pointer initialized by new is error prone since the
caller must remember to delete the object. This becomes more difficult if that object happens
to be a temporary object.

X& f (float32 a)
{
 return *new x(a); // Error prone. Caller must remember to perform
} // the delete.

X& ref = f(1); // The caller of f() must be responsible for deleting
… // the memory.
delete &ref // delete must be called for every invocation of f().
…
X& x = f(1)*f(2)*f(3)*f(4); // Memory leak: delete not called for temporaries.

Example B: Returning a pointer to a local object is problematic since the object ceases to
exist after return. AV Rule 111 explicitly prohibited this practice.

X* f (float32 a) // Error: the caller most likely believes he is
{ // responsible for deleting the object. However, the object
 X b(a); // ceases to exist when the function returns.
 return &b
}

Example C: A function can return a pointer to an object, but the recipient must remember to
perform the delete.

X *f(float32 a)
{
 return new X(a); // Beware of leak: recipient must remember to perform the delete.
}

Example D: Returning an object by value is a simple method that does not obscure
ownership issues.

X f(float 32 a) // Simple and clear.
{
 X b(a);
 return b;
}

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

114

AV Rule 120
Overloading functions can be a powerful tool for creating families of related operations that
differ only with respect to argument type. If not used consistently, however, overloading can
lead to considerable confusion.
Example A: Proper usage of function overloading is illustrated below. All overloads of
contains() share the same name as well as perform the same conceptual task.

 class String
 {
 public: // Used like this:
 // ... // String x = "abc123";
 int32 contains (const char c); // int32 i = x.contains('b');
 int32 contains (const char* cs); // int32 j = x.contains("bc1");
 int32 contains (const String& s); // int32 k = x.contains(x);
 // ...
 };

Example B: Improper use of operator overloading is illustrated below. For two-dimensional
vectors, operator*() means dot product while for three dimensional vectors, operator*()
means cross product.

Vector2d {
 public:
 float32 operator*(const Vector2d & v); // compute dot product
 …
};
Vector3d {
 public:
 Vector3d operator*(const Vector3d & v) // compute cross product
 …
};

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

115

AV Rule 121
The Green Hills compiler employs two inlining approaches, each using a different inlining
strategy, and each coming at a different stage. The first is a front-end inliner. It will only
consider inline functions (functions declared with the keyword inline or member functions
whose bodies are defined inside class definitions).
The front-end inliner will inline only those functions which can be converted to expressions.
Therefore, functions which simply return an expression, straight code functions (which can
be converted to comma expressions), or functions with if statements that can be converted to
“?:” expressions will be considered candidates for inlining. The front-end inliner is not
capable of inlining more complex statements (e.g. functions containing loops).
The second inliner is the independent code inliner which is capable of inlining most any
function (except recursive functions). Inlining complex functions may lead to significant
code bloat as well as to complicate debugging efforts. As a result, only the front-end inliner
should be used in C/C++ programs.

AV Rule 122
The following example illustrates a class that inlines a trivial accessor and a trivial mutator.

class Example_class
{
 public:
 int32 get_limit (void) // Sample accessor to be inlined
 {
 return limit;
 }
 void set_limit (int32 limit_parm) // Sample mutator to be inlined
 {
 limit = limit_parm;
 }
 private:
 int32 limit;
};

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

116

AV Rule 124
Simple forwarding functions should be inlined as illustrated below.

Example A:
inline draw() // Example of a forwarding function that should be inlined
{
 draw_foreground ();
}

AV Rule 125
The construction of large or complex temporary objects can exact a significant performance
penalty. Consequently, the following observations are provided as guidance in limiting the
number unnecessary temporaries.

• Problem 1: Temporary objects are created (and destroyed) to make function calls
succeed via implicit type conversions. The conversions will occur either when an
argument is passed by value or is passed as a reference to const objects.

• Solution 1: Overload the function in question so that the implicit conversion will not
be necessary.

• Problem 2: Temporary objects are created (and destroyed) when a function returns
an object.

• Solution 2a: Return a reference when possible. If it is not possible to return a
reference (as in the case of overloading operator*()), try to take advantage of “return
value optimization” (eliminating a local temporary by utilizing the object at the
functions return site). For example:

c = a * b;
…
inline const Rational operator*(const Rational& lhs,
 const Rational& rhs)
{
 return Rational (lhs.get_numerator() * rhs.get_numerator(),
 lhs.get_denominator() * rhs.get_denominator());
}
Eliminates both the temporary created inside the operation*() and the temporary
returned by operator*(). The new object is simply constructed inside the space
allocated for “c”.

• Solution 2b: Change the design. For example, use operator*=() instead of
operator*(), since operator*= () does not require the generation of a temporary as
does operator*().

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

117

AV Rule 126
A C++ style comment begins with “//” and terminates with a new-line. However, the
placement of vertical-tab or form-feed characters within a comment may produce unexpected
results. That is, if a form-feed or a vertical-tab character occurs in a C++ style comment, only
white-space characters may appear between it and the new-line that terminates the comment.
An implementation is not required to diagnose a violation of this rule. [10]

AV Rule 136
The following code illustrates some problems encountered when a variable is not declared at
the smallest feasible scope.

void fun_1()
{
 int32 i; // Bad: i is prematurely declared (the intent is to use i in the
 // for loop only)
 … // Bad: i has a meaningless value in the region of the code
 for (i=0 ; i<max ; ++i)
 {
 …
 }
 …. // Bad: i should not be used here, but could be used anyway

 for(int32 j=0 ; j<max ; ++j) // Good: j is not declared or initialized until needed
 { // Good: j is only known within the for loop’s scope
 …
 }
}

AV Rule 137
MISRA Reason: Declarations at file scope are external by default. Therefore if two files
both declare an identifier with the same name at file scope, the linker will either give an
error, or they will be the same variable, which may not be what the programmer intended.
This is also true if one of the variables is in a library somewhere. Use of the static storage-
class specifier will ensure that identifiers are only visible to the file in which they are
declared.
If a variable is only to be used by functions within the same file then use static. Similarly if a
function is only called from elsewhere within the same file, use static.
Typically, functions whose declarations appear in a header (.h) file are intended to be called
from other files and should therefore never be specified with the static keyword. Conversely,
functions whose declarations appear in an implementation body (.cpp) file should never be
called from other files, and hence should always be declared with the static keyword.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

118

AV Rule 138
The C++ Standard [10] defines linkage in the following way:

• When a name has external linkage, the entity it denotes can be referred to by names
from scopes of other translation units or from other scopes of the same translation
unit.

• When a name has internal linkage, the entity it denotes can be referred to by names
from other scopes in the same translation unit.

Hence, having names with both internal and external linkage can be confusing since the
objects to which they actually refer may not be obvious. Consider the following example
where the i declared on line 1 has internal linkage while the i on line 2 has external linkage.
Which entity is referenced by the i on line 3?

{
 static int32 i=1; // line 1
 { // Bad: the i with external linkage hides the i
 // with internal linkage.
 extern int32 i; // line 2
 …
 a[i] = 10; // line 3: Confusing: which i?
 }
}

AV Rule 139
Adherence to this rule will normally mean declaring external objects in header files which
will then be included in all those files that use those objects (including the files which define
the objects).

Example A: Two files declare the same variable. This style could lead to errors since a

could be declared in many different files. A change in one of those files
would affect all others and would be difficult to pinpoint.

// In File_1.cpp
int32 a = 3;

// In File_2.cpp
extern int32 a;

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

119

Example B: Here, a is declared in a header file. All other files that need access to a
simply include the header file. In this way, consistency is assured.

// In File_1.h
extern int32 a;

// In File_1.cpp
#include <File_1.h>
int32 a = 3;

// In File_2.cpp

 #include <File_1.h>

AV Rule 141
Example A: Declaring an enumeration in the definition of its type can lead to readability
problems and unnamed data types as illustrated below.

enum // Don’t do this: Creates an unnamed data type.
{
 up,
 down
} direction;
enum i { in, out } i; // Don’t do this: Difficult to read.

Example B: Separation of the declaration and definition are preferred as illustrated below.
Note that this requires the data type to be named which provides a mechanism to create other
variables of the same type and the ability to type cast.

enum XYZ_direction
{
 up,
 down
};
XYZ_direction direction;

Example C: Note that a legitimate use of an unnamed enumeration is to define symbolic
constants within a class declaration.

class X
{
 enum
 {
 max_length = 100,
 max_time = 73
 }; // Defines symbolic constants for the class
 …
};

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

120

Example D: Note that the following declarations are not prohibited under this rule.
int32 i=0;
pair<float32,int32> p;

AV Rule 142
MISRA Rule 30 requires all automatic variables to have an assigned value. Compilers will,
by default, initialize external and static variables to the value zero. However, it is considered
good practice to initialize all variables, not just automatic/stack variables, to an initial value
for purposes of 1) clarity and 2) bringing focused attention to the initialization of each
variable. Therefore, this rule requires ALL variables to be initialized. Exception may be
granted for volatile variables.

AV Rule 143
Introducing variables before they can be assigned meaningful values causes a number of
problems as illustrated in the following examples.
Example A: The following code illustrates some problems encountered when variables are
introduced before they can be properly initialized.

void fun_1() // Poor implementation
{
 int32 i; // Bad: i is prematurely declared (the intent is to use i in the for
 // loop only)
 int32 max=0; // Bad: max initialized with a dummy value.
 … // Bad: i and max have meaningless values in this
 // region of the code.
 max = f(x);
 for (i=0 ; i<max ; ++i)
 {
 …
 }
 …. // Bad: i should not be used here, but could be used anyway
}

void fun_1() // Good implementation
{
 ….
 int32 max = f(x); // Good: max not introduced until meaningful value is
 // available
 for (int32 i=0 ; i<max ; ++i) // Good: i is not declared or initialized until needed
 { // Good: i is only known within the for loop’s scope
 …
 }
}

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

121

Example B: An instance of class X is constructed prior to the point at which it can be fully
initialized. To complete the initialization, a separate init() method must be called when
sufficient information becomes available. However, since the object may only be in a quasi-
valid state prior to the invocation of init(), all method invocations between object
construction and init() are suspect. See also AV Rule 73 concerning unnecessary default
constructors.

class X {
 public:
 X::X() {} // Bad: default constructor builds partially initialized object.
 init (int32 max_, int32 min_)
 {
 max = _max ;
 min = _min;
 }
 int32 range()
 {
 return max-min ;
 }
 …
 private:
 int32 max;
 int32 min;
};

void foo()
{
 X x; // Bad: x constructed but without data
 …
 x.range(); // Bad: undefined result.
 ….
 x.init(lbound, ubound); // Bad: x initialized later than necessary
}

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

122

AV Rule 145
If an enumerator list is given with no explicit initialization of members, then C++ allocates a
sequence of integers starting at 0 for the first element and increasing by 1 for each
subsequent element. For most purposes this will be adequate.
An explicit initialization of the first element, as permitted by the above rule, forces the
allocation of integers to start at the given value. When adopting this approach it is essential to
ensure that the initialization value used is small enough that no subsequent value in the list
will exceed the int storage used by enumeration constants.
Explicit initialization of all items in the list, which is also permissible, prevents the mixing of
automatic and manual allocation, which is error prone. However it is then the responsibility
of the programmer to ensure that all values are in the required range, and that values are not
unintentionally duplicated.

Example A:
//Legal enumerated list using compiler-assigned enum values
//off=0, green=1, yellow=2, red=3

enum Signal_light_states_type
{
 off,
 green,
 yellow,
 red
};

Example 2:
// Legal enumeration, assigning a value to the first item in the list.

enum Channel_assigned_type
{
 channel_unassigned = -1,
 channel_a,
 channel_b,
 channel_c
};

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

123

Example 3:
// Control mask enumerated list. All items explicitly
// initialized.

enum FSM_a_to_d_control_enum_type
{
 start_conversion = 0x01,
 stop_conversion = 0x02,
 start_list = 0x04,
 end_list = 0x08,
 reserved_3_bit = 0x70,
 reset_device = 0x80
};

Example 4:
// Legal: standard convention used for enumerations that are intended to index arrays.

enum Color {
 red,
 orange,
 yellow,
 green,
 blue,
 indigo,
 violet,
 Color_begin = red,
 Color_end = violet,
 Color_NOE // Number of elements in array
};

AV Rule 147
Manipulating the underlying bit representation of a floating point number is error-prone, as
representations may vary from compiler to compiler, and platform to platform. There are,
however, specific built-in operators and functions that may be used to extract the mantissa
and exponent of floating point values.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

124

AV Rule 151.1
Since string literals are constant, they should only be assigned to constant pointers as
indicated below:

 char* c1 = “Hello”; // Bad: assigned to non-const
 char c2[] = “Hello”; // Bad: assigned to non-const
 char c3[6] = “Hello”; // Bad: assigned to non-const
 c1[3] = ‘a’; // Undefined (but compiles)

 const char* c1 = “Hello”; // Good
 const char c2[] = “Hello”; // Good
 const char c3[6] = “Hello”; // Good
 c1[3] = ‘a’; // Compile error

AV Rule 157
Care should be taken when short-circuit operators are utilized. For example, if the logical
expression in the following code evaluates to false, the variable x will not be incremented.
This could be problematic since subsequent statements may assume that x has been
incremented.

if (logical_expression && ++x) // Bad: right-hand side not evaluated if the logical
 // expression is false.
…
f(x); // Error: Assumes x is always incremented.
…

AV Rule 158
The intent of this rule is to require parenthesis where clarity will be enhanced while stopping
short of over-parenthesizing expressions. In the following examples, parenthesizing operands
(that contain binary operators) of the logical operators && or || enhances readability.

Examples:
valid (p) && add(p) // parenthesis not required
x.flag && y.flag // parenthesis not required
a[i] || b[j] // parenthesis not required

(x < max) && (x > min) // parenthesis required
(a || b) && (c || d) // parenthesis required

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

125

AV Rule 160
The intent of this rule is to prohibit assignments in contexts that are obscure or otherwise
easily misunderstood. The following example illustrates some of the problems this rule
addresses.
Note that a for-init-statement (that is not a declaration) is an expression statement.

for (for-init-statement condition-opt ; expression-opt) statement

for-init-statement:
 expression-statement

 simple-declaration

Examples:
x = y; // Good: the intent to assign y to x and then check if x is
if (x != 0) // not zero is explicitly stated.
{
 foo ();
}
if ((x = y) != 0) // Bad: not as readable as it could be.
{ // Assignment should be performed prior to the “if”statement
 foo ();
}
if (x = y) // Bad: intent is very obscure: a code reviewer could easily
{ // think that “==” was intended instead of “=”.
 foo ();
}

for (i=0 ; i<max ; ++i) // Good: assignment in expression statement of “for” statement
{
 …
}

AV Rule 168
MISRA Rule 42 only allows use of the comma operator in the control expression of a for
loop. The comma operator can be used to create confusing expressions. It can be used to
exchange the values of variable array elements where the exchange appears to be a single
operation. This simplicity of operation makes the code less intuitive and less readable. The
comma operator may also be easily confused with a semicolon used in the for loop syntax.
Therefore, all uses of the comma operator will not be allowed.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

126

AV Rule 177
User-defined conversion functions come in two forms: single-argument constructors and type
conversion operators. Implicit type conversions may be eliminated as follows:

• Single-argument constructors: use the “explicit” keyword on single-argument
constructors so that the compiler will not supply implicit conversions through the
constructor.

• Type conversion operators: don’t define conversion operators. If type conversion
functionality is required, then define a member function to fulfill the same role.
Unlike the type conversion operator, however, a member function must be called
explicitly, thus eliminating any “surprises” that could arise if the type conversion
operator were used.

Examples 1 and 2 demonstrate these principles.
Example 1a: The Vector_int class below has a single argument constructor used to build
vectors. However, this constructor may be called in ways a user may not expect. The solution
is to use the explicit keyword in the constructor declaration which precludes the constructor
from being called implicitly.

bool operator == (const Vector_int &lhs, const Vector_int &rhs)
{
 // compare two Vector_ints
}
class Vector_int {
 public:
 Vector_int (int32 n);
 …
};

Vector_int v1(10),
 v2(10); // create two vectors of size 10;
…
for (int32 i=0 ; i<10 ; ++i)
{
 if (v1 == v2[i]) // The programmer meant to compare the elements of two Vectors.
 { // However, the subscript of the first was inadvertently left off.
 … // Thus, the compiler is asked to compare a Vector_int with an
 } // integer. The single argument constructor is called to convert the
} // integer to a new Vector_int so that the comparison can take place.
 // This is almost certainly not what is expected.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

127

Example 1b: The constructor is declared explicit so that the error is caught at compile time.

class Vector_int
{
 public:
 explicit Vector_int (int32 n) ;
 …
};

Vector_int v1(10), v2(10); // create two vectors of size 10;
…
for (int32 i=0 ; i<10 ; ++i)
{
 if (v1 == v2[i]) // The programmer meant to compare the elements of two Vectors.
 { // However, the subscript of the first was inadvertently left off.
 … // Thus, the compiler is asked to compare a Vector_int with an
 } // integer. The explicit keyword prevents the constructor from
} // being called implicitly, so the compiler generates an error.

Example 2a: Class Complex defines a complex number, but the output operator has not
been defined for the class. Thus, when the user attempts to print out a
complex number, an error is not generated. Instead, the number is silently
converted to a real number by the conversion operator. This yields a
potentially surprising result to the client.

class Complex
{
 public:
 Complex (double r, double i = 1) : real(r), imaginary(i) {} // Constructor
 operator double() const; // Conversion operator
 … // converts Complex to double
 private:
 double real;
 double imaginary;
};

Complex r(1,2);

cout << r << endl; // User might expect compile error, but instead
 // r is automatically converted to decimal form
 // potentially losing information.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

128

Example 2b: Instead of the conversion operator, class Complex now has a member function
that performs the same role. Hence, the same functionality is maintained but without any
potential surprises.

class Complex
{
 public:
 Complex (double r, double i = 1) : real(r), imaginary(i) {} // Constructor
 double as_double() const; // Conversion operator
 … // converts Complex to double
 private:
 double real;
 double imaginary;
};

Complex r(1,2);

cout << r << endl; // Compile error generated.
cout << r.asDouble() << endl; // Called explicitly rather than
 // implicitly.

AV Rule 180
The following examples illustrate implicit conversions that result in the loss of information:

int32 i =1024;
char c = i; // Bad: (integer-to-char) implicit loss of information.
float32 f = 7.3;
int32 j= f; // Bad: (float-to-int) implicit loss of information.
int32 k = 1234567890;
float32 g = k; // Bad: (int-to-float) implicit loss of information
 // (g will be 1234567936)

Note that an explicit cast to a narrower type (where the loss of information could occur) may
be used only where specifically required algorithmically. The explicit cast draws attention to
the fact that information loss is possible and that appropriate mitigations must be in place.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

129

AV Rule 185
Traditional C-style casts raise several concerns. First, they enable most any type to be
converted to most any other type without any indication of the reason for the conversion
Next, the C-style cast syntax:

(type) expression // convert expression to be of type type.
is difficult to identify for both reviewers and tools. Consequently, both the location of
conversion expressions as well as the subsequent analysis of the conversion rationale proves
difficult for C-style casts.
Thus, C++ introduces several new-style casts (const_cast, dynamic_cast4, reinterpret_cast,
and static_cast) that address these problems. The new-style casts have the following form:

 const_cast<type> (expression) // convert expression to be of type type.
 reinterpret_cast<type> (expression)
 static_cast<type> (expression)

Not only are these casts easy to identify, but they also communicate more precisely the
developer’s intent for applying a cast.
See also rule AV Rule 178 concerning conversions between derived classes and base classes.

AV Rule 187
ISO/IEC 14882 defines a side effect as a change in the state of the execution environment.
More precisely,

Accessing an object designated by a volatile lvalue, modifying an object, calling a library
I/O function, or calling a function that does any of those operations are all side effects,
which are changes in the state of the execution environment.

Example: Potential side effect
 if (flag) // Has side effect only if flag is true.
 {
 foo();
 }
Example: The following expression has no side effects

• 3 + 4; // Bad: statement has zero side effects
Example: The following expressions have side effects

• x = 3 + 4; // Statement has one side effect: x is set to 7.
• y = x++; // Statement two side effects: y is set to x and x is incremented.

4 Note that dynamic casts are not allowed at this point due to lack of tool support, but could be considered at some
point in the future after appropriate investigation has been performed for SEAL1/2 software.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

130

AV Rule 192
Providing a final else clause (or comment indicating why a final else clause is unnecessary)
ensures all cases are handled in an else if series as illustrated by the following examples.

Example A: Final else clause not needed since there is no else if.
if (a < b)
{
 foo();
}

Example B: Final else clause needed in case none of the prior conditions are satisfied.
if (a < b)
{
 …
}
else if (b < c)
{
 …
}
else if (c < d)
{
}
else // Final else clause needed
{
 handle_error();
}

Example C: Final else clause not needed, since all possible conditions are handled.
Therefore a comment is included to clarify this condition.

if (status == error1)
{
 handle_error1();
}
else if (status == error2)
{
 handle_error2()
}
else if (status == error3)
{
 handle_error3()
} // No final else needed: all possible errors are accounted for.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

131

AV Rule 193
Terminating a non-empty case clause in a switch statement with a break statement eliminates
potentially confusing behavior by prohibiting control from falling through to subsequent
statements. In the example below, primary and secondary colors are handled similarly so
break statements are unneeded within each group. However, every non-empty case clause
must be terminated with a break statement for this segment of code to work as intended.
Note: Omitting the final default clause allows the compiler to provide a warning if all

enumeration values are not tested in the switch statement.
switch (value)
{
 case red : // empty since primary_color() should be called
 case green : // empty since primary_color() should be called
 case blue : primary_color (value);
 break; // Must break to end primary color handling
 case cyan :
 case magenta :
 case yellow : secondary_color (value);
 break; // Must break to end secondary color handling
 case black : black (value);
 break;
 case white : white (value);
 break;
}

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

132

AV Rule 204
AV Rule 204 attempts to prohibit side-effects in expressions that would be unclear,
misleading, obscure, or would otherwise result in unspecified or undefined behavior.
Consequently, an operation with side-effects will only be used in the following contexts:

Note: It is permissible for a side-effect to occur in conjunction with a constant expression.
However, care should be taken so that additional side-effects are not “hidden” within
the expression.

Note: Functions f(), g(), and h() have side-effects.

1. by itself

++i; // Good
for (int32 i=0 ; i<max ; ++i) // Good: includes the expression portion of a

 // for statement

i++ - ++j; // Bad: operation with side-effect doesn’t occur by itself.

2. the right-hand side of an assignment

y = f(x); // Good
y = ++x; // Good: logically the same as y=f(x)
y = (-b + sqrt(b*b -4*a*c))/(2*a); // Good: sqrt() does not have side-effect
y = f(x) + 1; // Good: side-effect may occur with a constant

y = g(x) + h(z); // Bad: operation with side-effect doesn’t occur by itself
 // on rhs of assignment
k = i++ - ++j; // Bad: same as above
y = f(x) + z; // Bad: same as above

3. a condition

if (x.f(y)) // Good
if (int x = f(y)) // Good: this form is often employed with dynamic casts
 // if (D* pd = dynamic_cast<D*> (pb)) {…}
if (++p == NULL) /// Good: side-effect may occur with a constant

if (i++ - --j) // Bad: operation with side-effect doesn’t occur by itself
 // in a condition

4. the only argument expression with a side-effect in a function call

f(g(z)); // Good
f(g(z),h(w)); // Bad: two argument expressions with side-effects
f(++i,++j); // Bad: same as above

f(g(z), 3); // Good: side-effect may occur with a constant

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

133

5. condition of a loop

while (f(x)) // Good
while(--x) // Good

while((c=*p++) != -1) // Bad: operation with side-effect doesn’t occur by itself
 // in a loop condition

6. switch condition

switch (f(x)) // Good

switch (c = *p++) // Bad: operation with side-effect doesn’t occur by itself
 // in a switch condition

7. single part of a chained operation

x.f().g().h(); // Good
a + b * c; // Good: (operator+() and operator*() are overloaded)
cout << x << y; // Good

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

134

AV Rule 204.1
Since the order in which operators and subexpression are evaluated is unspecified,
expressions must be written in a manner that produces the same value under any order the
standard permits.
 i = v[i++]; // Bad: unspecified behavior
 i = ++i + 1; // Bad: unspecified behavior
 p->mem_func(*p++); // Bad: unspecified behavior

AV Rule 207
Unencapsulated global data can be dangerous and thus should be avoided. Note that objects
with only get and set methods, or get and set methods for each attribute are not considered to
be encapsulated.

int32 x=0; // Bad: Unencapsulated global object.

class Y {
 in32 x;
 public:
 Y(int32 y_);
 int32 get_x();
 void set_x();
};

Y y (0); // Bad: Unencapsulated global object.

AV Rule 209
A UniversalTypes file will be created to define all standard types for developers to use. The
types include:

bool, // built-in type
char, // built-in type
int8, int16, int32, int64, // user-defined types
uint8, uint16, uint32, uint64, // user-defined types
float32, float64 // user-defined types

Note: Whether char represents signed or unsigned values is implementation-defined.

However, since modern implementations almost exclusively treat char as unsigned
char, the built-in char type will be used under the assumption that it is unsigned.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

135

AV Rule 210.1
This rule is intended to prohibit an application from making assumptions concerning the
order in which non-static data members, separated by an access specifier, are ordered.
Consider Example A below. Class A can not be reliably “overlayed” on incoming message
data, since attribute ordering (across access specifiers) is unspecified.
In contrast, structure B may be reliably “overlayed” on the same incoming message data.

Example A:
class A
{
…
 protected: // a could be stored before b, or vice versa
 int32 a;
 private:
 int32 b;
};
…
 // Bad: application assumes that objects of
 // type A will always have attribute a
 // stored before attribute b.
A* a_ptr = static_cast<A*>(message_buffer_ptr);

Example B:
struct B
{
 int32 a;
 int32 b;
};

 …
 // Good: attributes in B not separated
 // by an access specifier
 B* b_ptr = static_cast<B*>(message_buffer_ptr);

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

136

AV Rule 213
Parentheses should be used to clarify operator precedence rules to enhance readability and
reduce mistakes. However, overuse of parentheses can clutter an expression thereby reducing
readability. Requiring parenthesis below arithmetic operators strikes a reasonable balance
between readability and clutter.
Table 2 documents C++ operator precedence rules where items higher in the table have
precedence over those lower in the table.

Examples: Consider the following examples. Note that parentheses are required to specify
operator ordering for those operators below the arithmetic operators.

x = a * b + c; // Good: can assume “*” binds before “+”
x = v->a + v->b + w.c; // Good: can assume “->” and “.” Bind before “+”

x = (f()) + ((g()) * (h())); // Bad: overuse of parentheses. Can assume
 // function call binds before “+” and “*”
x = a & b | c; // Bad: must use parenthesis to clarify order
x = a >> 1 + b; // Bad: must use parenthesis to clarify order

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

137

Table 2 Operator Precedence [2]

Operator Description Associativity
scope resolution
scope resolution
global
global

class_name :: member
namespace_name :: member
:: name
:: qualified-name

left-to-right
left-to-right
right-to-left
right-to-left

member selection
member selection
subscripting
function call
value construction
post increment
post decrement
type identification
run-time type identification
run-time checked conversion
compile-time checked conversion
unchecked conversion
const conversion

object . member
pointer -> member
pointer [expr]
expr (expr_list)
type (expr_list)
lvalue ++
lvalue –
typeid (type)
typeid (expr)
dynamic_cast < type > (expr)
static_cast < type > (expr)
reinterpret_cast < type > (expr)
const_cast < type > (expr)

left-to-right

size of object
size of type
pre increment
pre decrement
complement
not
unary minus
unary plus
address of
dereference
create (allocate)
create (allocate and initialize)
create (place)
create (place and initialize)
destroy (deallocate)
destroy array
cast (type conversion)

sizeof expr
sizeof (type)
++ lvalue
-- lvalue
~ expr
! expr
- expr
+ expr
& lvalue
* expr
new type
new type (expr-list)
new (expr-list) type
new (expr-list) type (expr-list)
delete pointer
delete [] pointer
(type) expr

right-to-left

member selection
member selection

object .* pointer-to-member
pointer ->* pointer-to-member

left-to-right

multiply
divide
modulo (remainder)

expr * expr
expr / expr
expr % expr

left-to-right

add (plus)
subtract (minus)

expr + expr
expr – expr

left-to-right

shift left expr << expr left-to-right

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

138

shift right expr >> expr
less than
less than or equal
greater than
greater than or equal

expr < expr
expr <= expr
expr > expr
expr >= expr

left-to-right

equal
not equal

expr == expr
expr != expr

left-to-right

bitwise AND expr & expr left-to-right
bitwise exclusive OR expr ^ expr left-to-right
bitwise inclusive OR expr | expr left-to-right
logical AND expr && expr left-to-right
logical OR expr || expr left-to-right
conditional expression expr ? expr : expr right-to-left
simple assignment
multiply and assign
divide and assign
modula and assign
add and assign
subtract and assign
shift left and assign
shift right and assign
AND and assign
inclusive OR and assign
exclusive OR and assign

lvalue = expr
lvalue *= expr
lvalue /= expr
lvalue %= expr
lvalue += expr
lvalue -= expr
lvalue <<= expr
lvalue >>= expr
lvalue &= expr
lvalue |= expr
lvalue ^= expr

right-to-left

throw exception throw expr right-to-left
comma (sequencing) expr , expr left-to-right

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

139

AV Rule 214
The order of initialization for non-local static objects may present problems. For example, a
non-local static object may not be used in a constructor if that object will not be initialized
before the constructor runs. At present, the order of initialization for non-local static objects,
which are defined in different compilation units, is not defined. This can lead to errors that
are difficult to locate.
The problem may be resolved by moving each non-local static object to its own function
where it becomes a local static object. If the function returns a reference to the local static
object it contains, then clients may access the object via the function without any of the
initialization order problems. Note that the function can be inlined to eliminate the function
call overhead.

Example:
// file 1
static int32 x = 5;

// file 2
static int32 y = x + 1; // Bad assumption. The compiler might not have initialized
 // static variable x.

The solution is to substitute static local objects for static non-local objects since the creation
time is precisely defined for static local objects: the first time through the enclosing function.

inline Resource& the_resource()
{
 static Resource r;
 return r;
}

Now clients may at any time reference the Resource object, r, as the_resource() without
consideration for the order of initialization among r and any other similarly defined local
static objects.
Alternately, one might consider allocating objects in a memory pool or on a stack at startup.

AV Rule 215
Pointers should be eliminated from user interfaces wherever possible. Instead, objects with
well defined interfaces should be used to hide pointers from clients as well as to ensure any
pointer manipulation would be performed in a well-defined manner. For example, passing an
Array object (instead of a raw array) through an interface eliminates the array decay problem
and hence any pointer arithmetic required on the receiving end.

AV Rule 216
The overall performance of a program is usually determined by a relatively small portion of
code. This is often referred to as the “80-20 Rule” which states that 80% of the time is spent
in only 20% of the code. Thus, design and coding decisions should be made from a safety
and clarity perspective with efficiency as a secondary goal. Only after adequate profiling
analysis has been performed (where the true bottlenecks have been identified) should
attempts at optimization be made.

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

140

AV Rule 220
Consider the class diagram in Example A where method_1() is inherited by classes B and C.
Suppose portions of method_1() (indicated by the shaded regions) are executed in each of A,
B, and C such that 100% of method_1() is covered, but not in any one context. A report
generated at the method level would produce a misleading view of coverage.
Alternately, consider the flattened class diagram in Example B. Each method is considered in
the context of the flattened class in which it exists. Hence coverage of method_1() is reported
independently for each context (A, B, and C).

Example A: Structural coverage of concrete (non-inherited) attributes produces a single
report purporting 100% coverage of method_1(). However, method_1() was not completely
covered in any one context.

A

method_1

B

method_2

C

method_3

Structural
Coverage

Report
(100%)

Coverage in A

Coverage in B

Coverage in C

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

141

Example B: Structural coverage of the flattened hierarchy considers method_1() to be a
member of each derived class. Hence an individual coverage report is generated for
method_1() in the context of classes A, B, and C.

A

method_1

B

method_1

method 2

C

method_1

method 3

Structural
Coverage

Report

Coverage in A

Coverage in B

Coverage in C

 Doc. No. 2RDU00001 Rev C
 Date: December 2005

142

APPENDIX B (COMPLIANCE)

“LDRA_Compliance” lists the rules in this document that can be automatically checked by
LDRA. Rules not checked by LDRA will be verified by manual inspection and results captured
on checklists.

Note that if other tools are employed to automatically check rules not checked by LDRA, this
appendix should be updated to reflect the source of verification

	1 INTRODUCTION
	2 REFERENCED DOCUMENTS
	3 GENERAL DESIGN
	3.1 Coupling & Cohesion
	3.2 Code Size and Complexity

	4 C++ CODING STANDARDS
	4.1 Introduction
	4.2 Rules
	4.2.1 Should, Will, and Shall Rules
	4.2.2 Breaking Rules
	4.2.3 Exceptions to Rules

	4.3 Terminology
	4.4 Environment
	4.4.1 Language
	4.4.2 Character Sets
	4.4.3 Run-Time Checks

	4.5 Libraries
	4.5.1 Standard Libraries

	4.6 Pre-Processing Directives
	4.6.1 #ifndef and #endif Pre-Processing Directives
	4.6.2 #define Pre-Processing Directive
	4.6.3 #include Pre-Processing Directive

	4.7 Header Files
	4.8 Implementation Files
	4.9 Style
	4.9.1 Naming Identifiers
	4.9.1.1 Naming Classes, Structures, Enumerated types and typedefs
	4.9.1.2 Naming Functions, Variables and Parameters
	4.9.1.3 Naming Constants and Enumerators

	4.9.2 Naming Files
	4.9.3 Classes
	4.9.4 Functions
	4.9.5 Blocks
	4.9.6 Pointers and References
	4.9.7 Miscellaneous

	4.10 Classes
	4.10.1 Class Interfaces
	4.10.2 Considerations Regarding Access Rights
	4.10.3 Member Functions
	4.10.4 const Member Functions
	4.10.5 Friends
	4.10.6 Object Lifetime, Constructors, and Destructors
	4.10.6.1 Object Lifetime
	4.10.6.2 Constructors
	4.10.6.3 Destructors

	4.10.7 Assignment Operators
	4.10.8 Operator Overloading
	4.10.9 Inheritance
	4.10.10 Virtual Member Functions

	4.11 Namespaces
	4.12 Templates
	4.13 Functions
	4.13.1 Function Declaration, Definition and Arguments
	4.13.2 Return Types and Values
	4.13.3 Function Parameters (Value, Pointer or Reference)
	4.13.4 Function Invocation
	4.13.5 Function Overloading
	4.13.6 Inline Functions
	4.13.7 Temporary Objects

	4.14 Comments
	4.15 Declarations and Definitions
	4.16 Initialization
	4.17 Types
	4.18 Constants
	4.19 Variables
	4.20 Unions and Bit Fields
	4.21 Operators
	4.22 Pointers & References
	4.23 Type Conversions
	4.24 Flow Control Structures
	4.25 Expressions
	4.26 Memory Allocation
	4.27 Fault Handling
	4.28 Portable Code
	4.28.1 Data Abstraction
	4.28.2 Data Representation
	4.28.3 Underflow/Overflow
	4.28.4 Order of Execution
	4.28.5 Pointer Arithmetic

	4.29 Efficiency Considerations
	4.30 Miscellaneous

	5 TESTING
	5.1.1 Subtypes
	5.1.2 Structure

